scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
01 Apr 2012
TL;DR: This unit outlines procedures for extracting nitrogenous metabolites, lipids, and intermediary metabolites (including TCA cycle oxoacids) from blood plasma using targeted metabolomics experiments based on liquid chromatography−mass spectrometry.
Abstract: The metabolome is the terminal downstream product of the genome and consists of the total complement of all the low-molecular-weight molecules (metabolites) in a cell, tissue, or organism. Metabolomics aims to measure a wide breadth of small molecules in the context of physiological stimuli or disease states. Metabolomics methodologies fall into two distinct groups: untargeted metabolomics, an intended comprehensive analysis of all the measurable analytes in a sample including chemical unknowns, and targeted metabolomics, the measurement of defined groups of chemically characterized and biochemically annotated metabolites. The methodologies considered in this unit focus on the processes of conducting targeted metabolomics experiments, and the advantages of this general approach are highlighted herein. This unit outlines procedures for extracting nitrogenous metabolites (including amino acids), lipids, and intermediary metabolites (including TCA cycle oxoacids) from blood plasma. Specifically, protocols are described for analyzing these metabolites using targeted metabolomics experiments based on liquid chromatography−mass spectrometry. Curr. Protoc. Mol. Biol. 98:30.2.1-30.2.24. © 2012 by John Wiley & Sons, Inc. Keywords: targeted metabolomics; liquid chromatography−mass spectrometry; multiple reaction monitoring

431 citations

Journal ArticleDOI
TL;DR: The findings support the usefulness of risk stratification of paediatric patients with Crohn's disease at diagnosis, and selection of anti-TNFα therapy.

431 citations

Journal ArticleDOI
TL;DR: It is demonstrated that TIGIT can inhibit T cell responses directly independent of APCs by generating an agonistic anti-TIGIT Ab, and can act directly on T cells by attenuating TCR-driven activation signals.
Abstract: Costimulatory molecules regulate the functional outcome of T cell activation, and disturbance of the balance between activating and inhibitory signals results in increased susceptibility to infection or the induction of autoimmunity. Similar to the well-characterized CD28/CTLA-4 costimulatory pathway, a newly emerging pathway consisting of CD226 and T cell Ig and ITIM domain (TIGIT) has been associated with susceptibility to multiple autoimmune diseases. In this study, we examined the role of the putative coinhibitory molecule TIGIT and show that loss of TIGIT in mice results in hyperproliferative T cell responses and increased susceptibility to autoimmunity. TIGIT is thought to indirectly inhibit T cell responses by the induction of tolerogenic dendritic cells. By generating an agonistic anti-TIGIT Ab, we demonstrate that TIGIT can inhibit T cell responses directly independent of APCs. Microarray analysis of T cells stimulated with agonistic anti-TIGIT Ab revealed that TIGIT can act directly on T cells by attenuating TCR-driven activation signals.

431 citations

Journal ArticleDOI
02 Feb 2018-Science
TL;DR: The accumulation of somatic mutations with age shows age-related, region- related, and disease-related molecular signatures and may be important in other human age-associated conditions.
Abstract: It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of fifteen normal individuals (aged 4 months to 82 years) as well as nine individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and Xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age—which we term genosenium—shows age-related, region-related, and disease-related molecular signatures, and may be important in other human age-associated conditions.

430 citations

Journal ArticleDOI
TL;DR: Analysis of kidney samples from patients with lupus nephritis and healthy control subjects revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses.
Abstract: Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.

430 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022628
20211,727
20201,534
20191,364
20181,107