scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Posted ContentDOI
30 Oct 2015-bioRxiv
TL;DR: The aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC) provides direct evidence for the presence of widespread mutational recurrence.
Abstract: Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities. The resulting catalogue of human genetic diversity has unprecedented resolution, with an average of one variant every eight bases of coding sequence and the presence of widespread mutational recurrence. The deep catalogue of variation provided by the Exome Aggregation Consortium (ExAC) can be used to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; we identify 3,230 genes with near-complete depletion of truncating variants, 79% of which have no currently established human disease phenotype. Finally, we show that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human knockout variants in protein-coding genes.

1,552 citations

Journal ArticleDOI
07 May 2015-Cell
TL;DR: Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations and may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design.

1,547 citations

Journal ArticleDOI
Katherine A Hoadley1, Christina Yau2, Christina Yau3, Toshinori Hinoue4  +735 moreInstitutions (16)
05 Apr 2018-Cell
TL;DR: Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, Pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which may inform strategies for future therapeutic development.

1,535 citations

Journal ArticleDOI
27 Jul 2017-Cell
TL;DR: DEMETER, an analytical framework that segregates on- from off-target effects of RNAi, demonstrates the basis behind one such predictive model linking hypermethylation of the UBB ubiquitin gene to a dependency on UBC and provides a foundation for a cancer dependency map that facilitates the prioritization of therapeutic targets.

1,533 citations

Journal ArticleDOI
05 Aug 2016-Science
TL;DR: LshC2c2 is a RNA-guided RNase which requires the activity of its two HEPN domains, suggesting previously unidentified mechanisms of RNA targeting and degradation by CRISPR systems.
Abstract: The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.

1,522 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022627
20211,727
20201,534
20191,364
20181,107