scispace - formally typeset
Search or ask a question
Institution

Broad Institute

NonprofitCambridge, Massachusetts, United States
About: Broad Institute is a nonprofit organization based out in Cambridge, Massachusetts, United States. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 6584 authors who have published 11618 publications receiving 1522743 citations. The organization is also known as: Eli and Edythe L. Broad Institute of MIT and Harvard.


Papers
More filters
Journal ArticleDOI
Swapan Mallick1, Swapan Mallick2, Swapan Mallick3, Heng Li2, Mark Lipson3, Iain Mathieson3, Melissa Gymrek, Fernando Racimo4, Mengyao Zhao3, Mengyao Zhao2, Mengyao Zhao1, Niru Chennagiri2, Niru Chennagiri3, Niru Chennagiri1, Susanne Nordenfelt3, Susanne Nordenfelt1, Susanne Nordenfelt2, Arti Tandon2, Arti Tandon3, Pontus Skoglund2, Pontus Skoglund3, Iosif Lazaridis3, Iosif Lazaridis2, Sriram Sankararaman5, Sriram Sankararaman2, Sriram Sankararaman3, Qiaomei Fu3, Qiaomei Fu2, Qiaomei Fu6, Nadin Rohland2, Nadin Rohland3, Gabriel Renaud7, Yaniv Erlich8, Thomas Willems9, Carla Gallo10, Jeffrey P. Spence4, Yun S. Song11, Yun S. Song4, Giovanni Poletti10, Francois Balloux12, George van Driem13, Peter de Knijff14, Irene Gallego Romero15, Aashish R. Jha16, Doron M. Behar17, Claudio M. Bravi18, Cristian Capelli19, Tor Hervig20, Andrés Moreno-Estrada, Olga L. Posukh21, Elena Balanovska, Oleg Balanovsky22, Sena Karachanak-Yankova23, Hovhannes Sahakyan24, Hovhannes Sahakyan17, Draga Toncheva23, Levon Yepiskoposyan24, Chris Tyler-Smith25, Yali Xue25, M. Syafiq Abdullah26, Andres Ruiz-Linares12, Cynthia M. Beall27, Anna Di Rienzo16, Choongwon Jeong16, Elena B. Starikovskaya, Ene Metspalu17, Ene Metspalu28, Jüri Parik17, Richard Villems28, Richard Villems17, Richard Villems29, Brenna M. Henn30, Ugur Hodoglugil31, Robert W. Mahley32, Antti Sajantila33, George Stamatoyannopoulos34, Joseph Wee, Rita Khusainova35, Elza Khusnutdinova35, Sergey Litvinov17, Sergey Litvinov35, George Ayodo36, David Comas37, Michael F. Hammer38, Toomas Kivisild39, Toomas Kivisild17, William Klitz, Cheryl A. Winkler40, Damian Labuda41, Michael J. Bamshad34, Lynn B. Jorde42, Sarah A. Tishkoff11, W. Scott Watkins42, Mait Metspalu17, Stanislav Dryomov, Rem I. Sukernik43, Lalji Singh44, Lalji Singh5, Kumarasamy Thangaraj44, Svante Pääbo7, Janet Kelso7, Nick Patterson2, David Reich2, David Reich3, David Reich1 
13 Oct 2016-Nature
TL;DR: It is demonstrated that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.
Abstract: Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.

1,133 citations

Journal ArticleDOI
21 Jun 2012-Nature
TL;DR: Recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1 are confirmed and a recurrent MAGI3–AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression is identified.
Abstract: Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3-AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3-AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.

1,132 citations

Journal ArticleDOI
08 May 2015-Science
TL;DR: Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples that are dominated by a relatively small number of genes, though few are exclusive to a particular tissue and vary more across tissues than individuals.
Abstract: Transcriptional regulation and posttranscriptional processing underlie many cellular and organismal phenotypes. We used RNA sequence data generated by Genotype-Tissue Expression (GTEx) project to investigate the patterns of transcriptome variation across individuals and tissues. Tissues exhibit characteristic transcriptional signatures that show stability in postmortem samples. These signatures are dominated by a relatively small number of genes—which is most clearly seen in blood—though few are exclusive to a particular tissue and vary more across tissues than individuals. Genes exhibiting high interindividual expression variation include disease candidates associated with sex, ethnicity, and age. Primary transcription is the major driver of cellular specificity, with splicing playing mostly a complementary role; except for the brain, which exhibits a more divergent splicing program. Variation in splicing, despite its stochasticity, may play in contrast a comparatively greater role in defining individual phenotypes.

1,131 citations

Posted ContentDOI
Konrad J. Karczewski1, Konrad J. Karczewski2, Laurent C. Francioli1, Laurent C. Francioli2, Grace Tiao1, Grace Tiao2, Beryl B. Cummings1, Beryl B. Cummings2, Jessica Alföldi1, Jessica Alföldi2, Qingbo Wang1, Qingbo Wang2, Ryan L. Collins1, Ryan L. Collins2, Kristen M. Laricchia1, Kristen M. Laricchia2, Andrea Ganna3, Andrea Ganna2, Andrea Ganna1, Daniel P. Birnbaum1, Laura D. Gauthier1, Harrison Brand2, Harrison Brand1, Matthew Solomonson2, Matthew Solomonson1, Nicholas A. Watts2, Nicholas A. Watts1, Daniel R. Rhodes4, Moriel Singer-Berk1, Eleanor G. Seaby1, Eleanor G. Seaby2, Jack A. Kosmicki1, Jack A. Kosmicki2, Raymond K. Walters2, Raymond K. Walters1, Katherine Tashman2, Katherine Tashman1, Yossi Farjoun1, Eric Banks1, Timothy Poterba1, Timothy Poterba2, Arcturus Wang2, Arcturus Wang1, Cotton Seed1, Cotton Seed2, Nicola Whiffin5, Nicola Whiffin1, Jessica X. Chong6, Kaitlin E. Samocha7, Emma Pierce-Hoffman1, Zachary Zappala1, Zachary Zappala8, Anne H. O’Donnell-Luria9, Anne H. O’Donnell-Luria1, Anne H. O’Donnell-Luria2, Eric Vallabh Minikel1, Ben Weisburd1, Monkol Lek10, Monkol Lek1, James S. Ware5, James S. Ware1, Christopher Vittal2, Christopher Vittal1, Irina M. Armean11, Irina M. Armean2, Irina M. Armean1, Louis Bergelson1, Kristian Cibulskis1, Kristen M. Connolly1, Miguel Covarrubias1, Stacey Donnelly1, Steven Ferriera1, Stacey Gabriel1, Jeff Gentry1, Namrata Gupta1, Thibault Jeandet1, Diane Kaplan1, Christopher Llanwarne1, Ruchi Munshi1, Sam Novod1, Nikelle Petrillo1, David Roazen1, Valentin Ruano-Rubio1, Andrea Saltzman1, Molly Schleicher1, Jose Soto1, Kathleen Tibbetts1, Charlotte Tolonen1, Gordon Wade1, Michael E. Talkowski1, Michael E. Talkowski2, Benjamin M. Neale2, Benjamin M. Neale1, Mark J. Daly1, Daniel G. MacArthur2, Daniel G. MacArthur1 
30 Jan 2019-bioRxiv
TL;DR: Using an improved human mutation rate model, human protein-coding genes are classified along a spectrum representing tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.
Abstract: Summary Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes critical for an organism’s function will be depleted for such variants in natural populations, while non-essential genes will tolerate their accumulation. However, predicted loss-of-function (pLoF) variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes. Here, we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence pLoF variants in this cohort after filtering for sequencing and annotation artifacts. Using an improved model of human mutation, we classify human protein-coding genes along a spectrum representing intolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.

1,128 citations

Journal ArticleDOI
Jörg Kämper1, Regine Kahmann1, Michael Bölker2, Li-Jun Ma3, Thomas Brefort1, Barry J. Saville4, Barry J. Saville5, Flora Banuett6, James W. Kronstad7, Scott E. Gold8, Olaf Müller1, Michael H. Perlin9, Han A. B. Wösten10, Ronald P. de Vries10, Jose Ruiz-Herrera, Cristina G. Reynaga-Peña, Karen M. Snetselaar11, Michael P. McCann11, José Pérez-Martín12, Michael Feldbrügge1, Christoph W. Basse1, Gero Steinberg1, José I. Ibeas12, William K. Holloman13, Plinio Guzmán14, Mark L. Farman15, Jason E. Stajich16, Rafael Sentandreu17, Juan Manuel González-Prieto, John C. Kennell18, Lazaro Molina1, Jan Schirawski1, Artemio Mendoza-Mendoza1, Doris Greilinger1, Karin Münch1, Nicole Rössel1, Mario Scherer1, Miroslav Vranes1, Oliver Ladendorf1, Volker Vincon1, Uta Fuchs1, Björn Sandrock2, Shaowu Meng5, Eric C.H. Ho5, Matt J. Cahill5, Kylie J. Boyce7, Jana Klose7, Steven J. Klosterman8, Heine J. Deelstra10, Lucila Ortiz-Castellanos, Weixi Li15, Patricia Sánchez-Alonso14, Peter Schreier19, Isolde Häuser-Hahn19, Martin Vaupel19, Edda Koopmann19, Gabi Friedrich19, Hartmut Voss, Thomas Schlüter, Jonathan Margolis20, Darren Mark Platt20, Candace Swimmer20, Andreas Gnirke20, Feng Chen20, Valentina Vysotskaia20, Gertrud Mannhaupt1, Ulrich Güldener, Martin Münsterkötter, Dirk Haase, Matthias Oesterheld, Hans-Werner Mewes21, Evan Mauceli3, David DeCaprio3, Claire M. Wade3, Jonathan Butler3, Sarah Young3, David B. Jaffe3, Sarah E. Calvo3, Chad Nusbaum3, James E. Galagan3, Bruce W. Birren3 
02 Nov 2006-Nature
TL;DR: The discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi.
Abstract: Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.

1,120 citations


Authors

Showing all 7146 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Albert Hofman2672530321405
Frank B. Hu2501675253464
David J. Hunter2131836207050
Kari Stefansson206794174819
Mark J. Daly204763304452
Lewis C. Cantley196748169037
Matthew Meyerson194553243726
Gad Getz189520247560
Stacey Gabriel187383294284
Stuart H. Orkin186715112182
Ralph Weissleder1841160142508
Chris Sander178713233287
Michael I. Jordan1761016216204
Richard A. Young173520126642
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

96% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

94% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

93% related

Scripps Research Institute
32.8K papers, 2.9M citations

93% related

Genentech
17.1K papers, 1.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202337
2022627
20211,727
20201,534
20191,364
20181,107