scispace - formally typeset
Search or ask a question
Institution

Brown University

EducationProvidence, Rhode Island, United States
About: Brown University is a education organization based out in Providence, Rhode Island, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 35778 authors who have published 90896 publications receiving 4471489 citations. The organization is also known as: brown.edu & Brown.


Papers
More filters
Journal ArticleDOI
TL;DR: The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with rheumatic diseases other than RA (non-RA).
Abstract: The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with rheumatic diseases other than RA (non-RA). The new criteria are as follows: 1) morning stiffness in and around joints lasting at least 1 hour before maximal improvement; 2) soft tissue swelling (arthritis) of 3 or more joint areas observed by a physician; 3) swelling (arthritis) of the proximal interphalangeal, metacarpophalangeal, or wrist joints; 4) symmetric swelling (arthritis); 5) rheumatoid nodules; 6) the presence of rheumatoid factor; and 7) radiographic erosions and/or periarticular osteopenia in hand and/or wrist joints. Criteria 1 through 4 must have been present for at least 6 weeks. Rheumatoid arthritis is defined by the presence of 4 or more criteria, and no further qualifications (classic, definite, or probable) or list of exclusions are required. In addition, a "classification tree" schema is presented which performs equally as well as the traditional (4 of 7) format. The new criteria demonstrated 91-94% sensitivity and 89% specificity for RA when compared with non-RA rheumatic disease control subjects.

19,409 citations

Journal ArticleDOI
TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.

18,761 citations

Journal ArticleDOI
23 Feb 2016-JAMA
TL;DR: The task force concluded the term severe sepsis was redundant and updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsi or at risk of developing sepsic shock.
Abstract: Importance Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination. Objective To evaluate and, as needed, update definitions for sepsis and septic shock. Process A task force (n = 19) with expertise in sepsis pathobiology, clinical trials, and epidemiology was convened by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Definitions and clinical criteria were generated through meetings, Delphi processes, analysis of electronic health record databases, and voting, followed by circulation to international professional societies, requesting peer review and endorsement (by 31 societies listed in the Acknowledgment). Key Findings From Evidence Synthesis Limitations of previous definitions included an excessive focus on inflammation, the misleading model that sepsis follows a continuum through severe sepsis to shock, and inadequate specificity and sensitivity of the systemic inflammatory response syndrome (SIRS) criteria. Multiple definitions and terminologies are currently in use for sepsis, septic shock, and organ dysfunction, leading to discrepancies in reported incidence and observed mortality. The task force concluded the term severe sepsis was redundant. Recommendations Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For clinical operationalization, organ dysfunction can be represented by an increase in the Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score of 2 points or more, which is associated with an in-hospital mortality greater than 10%. Septic shock should be defined as a subset of sepsis in which particularly profound circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. Patients with septic shock can be clinically identified by a vasopressor requirement to maintain a mean arterial pressure of 65 mm Hg or greater and serum lactate level greater than 2 mmol/L (>18 mg/dL) in the absence of hypovolemia. This combination is associated with hospital mortality rates greater than 40%. In out-of-hospital, emergency department, or general hospital ward settings, adult patients with suspected infection can be rapidly identified as being more likely to have poor outcomes typical of sepsis if they have at least 2 of the following clinical criteria that together constitute a new bedside clinical score termed quickSOFA (qSOFA): respiratory rate of 22/min or greater, altered mentation, or systolic blood pressure of 100 mm Hg or less. Conclusions and Relevance These updated definitions and clinical criteria should replace previous definitions, offer greater consistency for epidemiologic studies and clinical trials, and facilitate earlier recognition and more timely management of patients with sepsis or at risk of developing sepsis.

14,699 citations

Journal ArticleDOI
TL;DR: The authors examined whether the Solow growth model is consistent with the international variation in the standard of living, and they showed that an augmented Solow model that includes accumulation of human as well as physical capital provides an excellent description of the cross-country data.
Abstract: This paper examines whether the Solow growth model is consistent with the international variation in the standard of living. It shows that an augmented Solow model that includes accumulation of human as well as physical capital provides an excellent description of the cross-country data. The paper also examines the implications of the Solow model for convergence in standards of living, that is, for whether poor countries tend to grow faster than rich countries. The evidence indicates that, holding population growth and capital accumulation constant, countries converge at about the rate the augmented Solow model predicts. This paper takes Robert Solow seriously. In his classic 1956 article Solow proposed that we begin the study of economic growth by assuming a standard neoclassical production function with decreasing returns to capital. Taking the rates of saving and population growth as exogenous, he showed that these two vari- ables determine the steady-state level of income per capita. Be- cause saving and population growth rates vary across countries, different countries reach different steady states. Solow's model gives simple testable predictions about how these variables influ- ence the steady-state level of income. The higher the rate of saving, the richer the country. The higher the rate of population growth, the poorer the country. This paper argues that the predictions of the Solow model are, to a first approximation, consistent with the evidence. Examining recently available data for a large set of countries, we find that saving and population growth affect income in the directions that Solow predicted. Moreover, more than half of the cross-country variation in income per capita can be explained by these two variables alone. Yet all is not right for the Solow model. Although the model correctly predicts the directions of the effects of saving and

14,402 citations

Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations


Authors

Showing all 36143 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Robert M. Califf1961561167961
Eric J. Topol1931373151025
Joan Massagué189408149951
Joseph Biederman1791012117440
Gonçalo R. Abecasis179595230323
James F. Sallis169825144836
Steven N. Blair165879132929
Charles M. Lieber165521132811
J. S. Lange1602083145919
Christopher J. O'Donnell159869126278
Charles M. Perou156573202951
David J. Mooney15669594172
Richard J. Davidson15660291414
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Yale University
220.6K papers, 12.8M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Johns Hopkins University
249.2K papers, 14M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023126
2022591
20215,549
20205,321
20194,806
20184,462