scispace - formally typeset
Search or ask a question
Institution

Brown University

EducationProvidence, Rhode Island, United States
About: Brown University is a education organization based out in Providence, Rhode Island, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 35778 authors who have published 90896 publications receiving 4471489 citations. The organization is also known as: brown.edu & Brown.


Papers
More filters
Journal ArticleDOI
Theo Vos1, Theo Vos2, Theo Vos3, Stephen S Lim  +2416 moreInstitutions (246)
TL;DR: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates, and there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries.

5,802 citations

Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations

Journal ArticleDOI
TL;DR: A new way of measuring the smoothness of a numerical solution is proposed, emulating the idea of minimizing the total variation of the approximation, which results in a fifth-order WENO scheme for the caser= 3, instead of the fourth-order with the original smoothness measurement by Liuet al.

5,649 citations

Journal ArticleDOI
Lars Onsager1
TL;DR: In this article, a general reciprocal relation applicable to transport processes such as the conduction of heat and electricity, and diffusion, is derived from the assumption of microscopic reversibility, and certain average products of fluctuations are considered.
Abstract: A general reciprocal relation, applicable to transport processes such as the conduction of heat and electricity, and diffusion, is derived from the assumption of microscopic reversibility. In the derivation, certain average products of fluctuations are considered. As a consequence of the general relation $S=k logW$ between entropy and probability, different (coupled) irreversible processes must be compared in terms of entropy changes. If the displacement from thermodynamic equilibrium is described by a set of variables ${\ensuremath{\alpha}}_{1},\ensuremath{\cdots},{\ensuremath{\alpha}}_{n}$, and the relations between the rates ${\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{1},\ensuremath{\cdots},{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{n}$ and the "forces" $\frac{\ensuremath{\partial}S}{d{\ensuremath{\alpha}}_{1}},\ensuremath{\cdots},\frac{\ensuremath{\partial}S}{d{\ensuremath{\alpha}}_{n}}$ are linear, there exists a quadratic dissipation-function, $2\ensuremath{\Phi}(\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}},\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}})\ensuremath{\equiv}\ensuremath{\Sigma}{\ensuremath{\rho}}_{j}{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{\mathrm{ij}}{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{i}=\frac{\mathrm{dS}}{\mathrm{dt}}=\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{S}(\ensuremath{\alpha},\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}})\ensuremath{\equiv}\ensuremath{\Sigma}(\frac{\ensuremath{\partial}S}{d{\ensuremath{\alpha}}_{j}}){\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{j}$ (denoting definition by $\ensuremath{\equiv}$). The symmetry conditions demanded by microscopic reversibility are equivalent to the variation-principle $\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{S}(\ensuremath{\alpha},\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}})\ensuremath{-}\ensuremath{\Phi}(\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}},\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}})=\mathrm{maximum},$ which determines ${\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{1},\ensuremath{\cdots},{\stackrel{\ifmmode \dot{}\else \.{}\fi{}}{\ensuremath{\alpha}}}_{n}$ for prescribed ${\ensuremath{\alpha}}_{1},\ensuremath{\cdots},{\ensuremath{\alpha}}_{n}$. The dissipation-function has a statistical significance similar to that of the entropy. External magnetic fields, and also Coriolis forces, destroy the symmetry in past and future; reciprocal relations involving reversal of the field are formulated.

5,505 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmology data sets.
Abstract: We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO) scale, and the Hubble constant, the matter and energy densities, bh 2 , ch 2 , and , are each determined to a precision of 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to k = 0.0027 +0.0039 0.0038 ; the summed mass of neutrinos is limited to P m < 0.44 eV (95% CL); and the number of relativistic species is found to lie within Ne = 3.84±0.40, when the full data are analyzed. The joint constraint on Ne and the primordial helium abundance, YHe, agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev‐Zel’dovich eect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe. Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter, space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

5,488 citations


Authors

Showing all 36143 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Robert Langer2812324326306
Robert M. Califf1961561167961
Eric J. Topol1931373151025
Joan Massagué189408149951
Joseph Biederman1791012117440
Gonçalo R. Abecasis179595230323
James F. Sallis169825144836
Steven N. Blair165879132929
Charles M. Lieber165521132811
J. S. Lange1602083145919
Christopher J. O'Donnell159869126278
Charles M. Perou156573202951
David J. Mooney15669594172
Richard J. Davidson15660291414
Network Information
Related Institutions (5)
Columbia University
224K papers, 12.8M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Yale University
220.6K papers, 12.8M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Johns Hopkins University
249.2K papers, 14M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023126
2022591
20215,549
20205,321
20194,806
20184,462