scispace - formally typeset
Search or ask a question
Institution

Budker Institute of Nuclear Physics

FacilityNovosibirsk, Russia
About: Budker Institute of Nuclear Physics is a facility organization based out in Novosibirsk, Russia. It is known for research contribution in the topics: Large Hadron Collider & Branching fraction. The organization has 4147 authors who have published 6586 publications receiving 235245 citations. The organization is also known as: Federal State Institution of Science Institute of Nuclear Physics. GI Budker, Siberian Branch of the Russian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress as mentioned in this paper.
Abstract: A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau-Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include h(c)(1P), chi(c2)(2P), B-c(+), and eta(b)(1S). In addition, the unexpected and still-fascinating X(3872) has been joined by more than a dozen other charmonium- and bottomonium-like "XYZ" states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c (c) over bar, b (b) over bar, and b (c) over bar bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an industrial-strength effort now dependent more on insight and innovation than pure computational power. New effective field theories for the description of quarkonium in different regimes have been developed and brought to a high degree of sophistication, thus enabling precise and solid theoretical predictions. Many expected decays and transitions have either been measured with precision or for the first time, but the confusing patterns of decays, both above and below open-flavor thresholds, endure and have deepened. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

1,354 citations

Journal ArticleDOI
Suyong Choi1, S. L. Olsen, Kazuo Abe, T. Abe  +172 moreInstitutions (46)
TL;DR: In this article, a narrow charmonium-like state produced in the exclusive decay process B+/--->K+/-pi(+)pi(-)J/psi has been observed, which has a mass of 3872.0+/-0.6(stat)+/- 0.5(syst) MeV.
Abstract: We report the observation of a narrow charmoniumlike state produced in the exclusive decay process B+/--->K+/-pi(+)pi(-)J/psi. This state, which decays into pi(+)pi(-)J/psi, has a mass of 3872.0+/-0.6(stat)+/-0.5(syst) MeV, a value that is very near the M(D0)+M(D(*0)) mass threshold. The results are based on an analysis of 152M B-Bmacr; events collected at the Upsilon(4S) resonance in the Belle detector at the KEKB collider. The signal has a statistical significance that is in excess of 10sigma.

1,294 citations

Journal ArticleDOI
K. Aamodt1, A. Abrahantes Quintana, R. Achenbach2, S. Acounis3  +1151 moreInstitutions (76)
TL;DR: The Large Ion Collider Experiment (ALICE) as discussed by the authors is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model.
Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

1,218 citations

Journal ArticleDOI
K. Aamodt1, N. Abel2, A. Abrahantes Quintana, A. Acero  +989 moreInstitutions (76)
TL;DR: In this paper, the production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons (,, and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC.

1,176 citations

Journal ArticleDOI
TL;DR: The BELLE detector for experiments at KEKB, a high luminosity, energy asymmetric B-factory, is now being constructed at KEK, and an overview of the detector systems and their status is presented.
Abstract: The BELLE detector for experiments at KEKB, a high luminosity, energy asymmetric B-factory, is now being constructed at KEK. An overview of the detector systems and their status is presented.

1,057 citations


Authors

Showing all 4184 results

NameH-indexPapersCitations
Andrei Gritsan1431531135398
Alexander Grillo13395682883
Bruce Schumm132134489640
Sergey Burdin131128391273
Evangelos Gazis131114784159
Stavros Maltezos12994379654
George Redlinger12998779411
Sotirios Vlachos12878977317
Theodoros Alexopoulos12893476102
Manolis Dris12890176163
Georgios Tsipolitis127100174792
Reisaburo Tanaka12696769849
Andrey Soukharev12684073021
Sergey Peleganchuk12689574292
Vassili Kazanin12692473718
Network Information
Related Institutions (5)
Joint Institute for Nuclear Research
28.8K papers, 663.8K citations

92% related

CERN
47.1K papers, 1.7M citations

90% related

Fermilab
14.6K papers, 760.5K citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

82% related

Institute for Advanced Study
7.2K papers, 621.1K citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202312
202238
2021280
2020382
2019427
2018443