scispace - formally typeset
Search or ask a question
Institution

Bulgarian Academy of Sciences

GovernmentSofia, Bulgaria
About: Bulgarian Academy of Sciences is a government organization based out in Sofia, Bulgaria. It is known for research contribution in the topics: Catalysis & Coupling constant. The organization has 17989 authors who have published 36276 publications receiving 642820 citations. The organization is also known as: Bulgarian Academy of Sciences,簡稱:BAS & Balgarska Akademiya na Naukite.


Papers
More filters
Journal ArticleDOI
V. A. Acciari1, E. Aliu2, T. C. Arlen3, Manuel A. Bautista4  +382 moreInstitutions (62)
24 Jul 2009-Science
TL;DR: Radio and VHE observations of the radio galaxy Messier 87 are revealed, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of theRadio flux from its nucleus, implying that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
Abstract: The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

269 citations

Journal ArticleDOI
TL;DR: The purpose of this review is to describe the recent efforts of scientists in pharmacological screening of natural and synthetic chalcones, studying the mechanisms of chalcone action and relevant structure-activity relationships, aimed at synthesis of pharmacologically active chalCones and their analogs.
Abstract: Chalcones (1,3-diaryl-2-propen-1-ones) are open chain flavonoids that are widely biosynthesized in plants. They are important for the pigmentation of flowers and, hence, act as attractants to the pollinators. As flavonoids, chalcones also play an important role in defense against pathogens and insects. A longstanding scientific research has shown that chalcones also display other interesting biological properties such as antioxidant, cytotoxic, anticancer, antimicrobial, antiprotozoal, antiulcer, antihistaminic and anti-inflammatory activities. Some lead compounds with various pharmacological properties have been developed based on the chalcone skeleton. Clinical trials have shown that these compounds reached reasonable plasma concentrations and did not cause toxicity. For these reasons, chalcones became an object of continued interest in both academia and industry. Nowadays, several chalcones are used for treatment of viral disorders, cardiovascular diseases, parasitic infections, pain, gastritis, and stomach cancer, as well as like food additives and cosmetic formulation ingredients. However, much of the pharmacological potential of chalcones is still not utilized. The purpose of this review is to describe the recent efforts of scientists in pharmacological screening of natural and synthetic chalcones, studying the mechanisms of chalcone action and relevant structure-activity relationships. Put together, these activities aimed at synthesis of pharmacologically active chalcones and their analogs.

269 citations

Journal ArticleDOI
TL;DR: Ten propolis samples from Bulgaria, Italy and Switzerland were analyzed by GC-MS and most samples displayed the typical chemical pattern of “poplar” propolis: they contained pinocembrin, pinobanksin and its 3-O-acetate, chrysin, galangin, prenyl esters of caffeic and ferulic acids.
Abstract: Ten propolis samples from Bulgaria, Italy and Switzerland were analyzed by GC-MS. As expected, most samples displayed the typical chemical pattern of "poplar" propolis: they contained pinocembrin, pinobanksin and its 3-O-acetate, chrysin, galangin, prenyl esters of caffeic and ferulic acids. Two samples differed significantly: one from the Graubunden Alpine region, Switzerland, rich in phenolic glycerides, and one from Sicily which contained only a limited number of phenolics and was rich in diterpenic acids.

268 citations

Journal ArticleDOI
TL;DR: Mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN 1, and UCHL1 are discussed.
Abstract: Alzheimer’s disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

268 citations

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2248 moreInstitutions (155)
TL;DR: For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
Abstract: New sets of CMS underlying-event parameters (“tunes”) are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell–Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.

265 citations


Authors

Showing all 18074 results

NameH-indexPapersCitations
Dimitri Bourilkov134148996884
Eduardo De Moraes Gregores133145492464
Georgi Sultanov132149393318
Plamen Iaydjiev131128587958
Pedro G Mercadante129133186378
Jordan Damgov129119585490
Roumyana Hadjiiska126100373091
Mircho Rodozov12497270519
Cesar Augusto Bernardes12496570889
Viktor Matveev123121273939
Ayda Beddall12081667063
Andrey Marinov11989357183
Mariana Vutova11760656698
Lester Packer11275163116
Patrick Couvreur11167856735
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

National Research Council
76K papers, 2.4M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

89% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022137
20211,323
20201,465
20191,285
20181,248