scispace - formally typeset
Search or ask a question
Institution

Bulgarian Academy of Sciences

GovernmentSofia, Bulgaria
About: Bulgarian Academy of Sciences is a government organization based out in Sofia, Bulgaria. It is known for research contribution in the topics: Coupling constant & Catalysis. The organization has 17989 authors who have published 36276 publications receiving 642820 citations. The organization is also known as: Bulgarian Academy of Sciences,簡稱:BAS & Balgarska Akademiya na Naukite.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the tautomerism of curcumin has been investigated in ethanol/water binary mixtures by using UV-Vis spectroscopy and advanced quantum-chemical calculations.

159 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluated the plant antioxidant system of three contrasting bean (Phaseolus vulgaris L.) genotypes in the response to drought and found that water stress increased lipid peroxidation (LPO), membrane injury index, H2O2 and OH production in leaves of stressed plants.
Abstract: The aim of the present work was to evaluate oxidative stress and plant antioxidant system of three contrasting bean (Phaseolus vulgaris L.) genotypes in the response to drought. Drought was imposed 14 d after emergence, by withholding water, until leaf relative water content reached 65 %. Water stress increased lipid peroxidation (LPO), membrane injury index, H2O2 and OH⋅ production in leaves of stressed plants. Activities of the antioxidative enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APOX) increased significantly under water stress in all the studied cultivars, while catalase (CAT) increased in cvs. Plovdiv 10 and Prelom, but decreased in cv. Dobrudjanski ran. Furthermore cv. Plovdiv 10 which had the highest APOX and CAT activities also showed the lowest increase in H2O2 and OH⋅ production and LPO while cv. Dobrudjanski ran showed the lowest increases (and often the lowest values) in the antioxidant enzyme activities and the highest increases of H2O2 and OH⋅ production, and LPO. On the basis of the data obtained we could specify cv. Plovdiv 10 and cv. Prelom as drought tolerant and cv. Dobrudjanski ran as a drought sensitive.

159 citations

Journal ArticleDOI
TL;DR: It is shown that testosterone levels during fetal masculinization can (re)program adult testosterone levels through effects on stem cells, which develop into adult Leydig cells (the source of testosterone) after puberty, for the first time.
Abstract: Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.

159 citations

Journal ArticleDOI
TL;DR: Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation as discussed by the authors, however, it exhibits no signs of damage or severe oxidative stress compared to untreated control plants.
Abstract: Haberlea rhodopensis is a resurrection plant with remarkable tolerance to desiccation. Haberlea exposed to drought stress, desiccation, and subsequent rehydration showed no signs of damage or severe oxidative stress compared to untreated control plants. Transcriptome anal- ysis by next-generation sequencing revealed a drought- induced reprogramming, which redirected resources from growth towards cell protection. Repression of photosyn- thetic and growth-related genes during water deficiency was concomitant with induction of transcription factors (mem- bers of the NAC, NF-YA, MADS box, HSF, GRAS, and WRKY families) presumably acting as master switches of the genetic reprogramming, as well as with an upregulation of genes related to sugar metabolism, signaling, and genes encoding early light-inducible (ELIP), late embryogenesis abundant (LEA), and heat shock (HSP) proteins. At the same time, genes encoding other LEA, HSP, and stress protective proteins were constitutively expressed at high levels even in unstressed controls. Genes normally involved in tolerance to salinity, chilling, and pathogens were also highly induced, suggesting a possible cross-tolerance against a number of abiotic and biotic stress factors. A notable percentage of the genes highly regulated in dehy- dration and subsequent rehydration were novel, with no sequence homology to genes from other plant genomes. Additionally, an extensive antioxidant gene network was identified with several gene families possessing a greater number of antioxidant genes than most other species with sequenced genomes. Two of the transcripts most abun- dant during all conditions encoded catalases and five more catalases were induced in water-deficient samples. Using the pharmacological inhibitor 3-aminotriazole (AT) to compromise catalase activity resulted in increased sensitivity to desiccation. Metabolome analysis by GC or LC-MS revealed accumulation of sucrose, verbascose, spermidine, and c-aminobutyric acid during drought, as well

158 citations

Journal ArticleDOI
TL;DR: In this article, the production of carbonyl compounds by single-strain cultures, kefir starter (Lactobacillus delbrueckii subsp. bulgaricus HP1+Lb. helveticus MP12+Lactococcus lactis C15+Streptococcus thermophilus T15+Saccharomyces cerevisiae A13) and kfir grains during fermentation and storage of kefir was studied.

158 citations


Authors

Showing all 18074 results

NameH-indexPapersCitations
Dimitri Bourilkov134148996884
Eduardo De Moraes Gregores133145492464
Georgi Sultanov132149393318
Plamen Iaydjiev131128587958
Pedro G Mercadante129133186378
Jordan Damgov129119585490
Roumyana Hadjiiska126100373091
Mircho Rodozov12497270519
Cesar Augusto Bernardes12496570889
Viktor Matveev123121273939
Ayda Beddall12081667063
Andrey Marinov11989357183
Mariana Vutova11760656698
Lester Packer11275163116
Patrick Couvreur11167856735
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

National Research Council
76K papers, 2.4M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

89% related

École Normale Supérieure
99.4K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022137
20211,321
20201,465
20191,284
20181,248