scispace - formally typeset
Search or ask a question

Showing papers by "California Institute of Technology published in 2008"


Journal ArticleDOI
TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Abstract: We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41–52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 × 10 5 distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices. The mRNA population specifies a cell’s identity and helps to govern its present and future activities. This has made transcriptome analysis a general phenotyping method, with expression microarrays of many kinds in routine use. Here we explore the possibility that transcriptome analysis, transcript discovery and transcript refinement can be done effectively in large and complex mammalian genomes by ultra-high-throughput sequencing. Expression microarrays are currently the most widely used methodology for transcriptome analysis, although some limitations persist. These include hybridization and cross-hybridization artifacts 1–3 , dye-based detection issues and design constraints that preclude or seriously limit the detection of RNA splice patterns and previously unmapped genes. These issues have made it difficult for standard array designs to provide full sequence comprehensiveness (coverage of all possible genes, including unknown ones, in large genomes) or transcriptome comprehensiveness (reliable detection of all RNAs of all prevalence classes, including the least abundant ones that are physiologically relevant). Other

12,293 citations


Journal ArticleDOI
TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Abstract: Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.

8,999 citations


Journal ArticleDOI
TL;DR: The Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN as mentioned in this paper was designed to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1)
Abstract: The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

5,193 citations


Journal ArticleDOI
18 Jun 2008-Nature
TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Abstract: Quantum networks provide opportunities and challenges across a range of intellectual and technical frontiers, including quantum computation, communication and metrology. The realization of quantum networks composed of many nodes and channels requires new scientific capabilities for generating and characterizing quantum coherence and entanglement. Fundamental to this endeavour are quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner. Such quantum connectivity in networks can be achieved by the optical interactions of single photons and atoms, allowing the distribution of entanglement across the network and the teleportation of quantum states between nodes.

5,003 citations


Journal ArticleDOI
TL;DR: A novel method for sparse signal recovery that in many situations outperforms ℓ1 minimization in the sense that substantially fewer measurements are needed for exact recovery.
Abstract: It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained l1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms l1 minimization in the sense that substantially fewer measurements are needed for exact recovery. The algorithm consists of solving a sequence of weighted l1-minimization problems where the weights used for the next iteration are computed from the value of the current solution. We present a series of experiments demonstrating the remarkable performance and broad applicability of this algorithm in the areas of sparse signal recovery, statistical estimation, error correction and image processing. Interestingly, superior gains are also achieved when our method is applied to recover signals with assumed near-sparsity in overcomplete representations—not by reweighting the l1 norm of the coefficient sequence as is common, but by reweighting the l1 norm of the transformed object. An immediate consequence is the possibility of highly efficient data acquisition protocols by improving on a technique known as Compressive Sensing.

4,869 citations


Journal ArticleDOI
TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract: Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

3,975 citations


Journal ArticleDOI
TL;DR: Candes et al. as discussed by the authors established new results about the accuracy of the reconstruction from undersampled measurements, which improved on earlier estimates, and have the advantage of being more elegant. But they did not consider the restricted isometry property of the sensing matrix.

3,421 citations


Journal ArticleDOI
25 Jul 2008-Science
TL;DR: A successful implementation through the use of the thallium impurity levels in lead telluride (PbTe) is reported, which results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin.
Abstract: The efficiency of thermoelectric energy converters is limited by the material thermoelectric figure of merit (zT). The recent advances in zT based on nanostructures limiting the phonon heat conduction is nearing a fundamental limit: The thermal conductivity cannot be reduced below the amorphous limit. We explored enhancing the Seebeck coefficient through a distortion of the electronic density of states and report a successful implementation through the use of the thallium impurity levels in lead telluride (PbTe). Such band structure engineering results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin. Use of this new physical principle in conjunction with nanostructuring to lower the thermal conductivity could further enhance zT and enable more widespread use of thermoelectric systems.

3,401 citations


Journal ArticleDOI
TL;DR: Evidence is provided that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature, which suggests differential development of bottom‐up limbic systems to top‐down control systems during adolescence as compared to childhood and adulthood.
Abstract: Adolescence is a developmental period characterized by suboptimal decisions and actions that are associated with an increased incidence of unintentional injuries, violence, substance abuse, unintended pregnancy, and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to both childhood and adulthood. This review provides a biologically plausible model of the neural mechanisms underlying these nonlinear changes in behavior. We provide evidence from recent human brain imaging and animal studies that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature. These findings suggest differential development of bottom-up limbic systems, implicated in incentive and emotional processing, to top-down control systems during adolescence as compared to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents prone to emotional reactivity, increasing the likelihood of poor outcomes.

2,660 citations


Journal ArticleDOI
10 Jan 2008-Nature
TL;DR: Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects, and these results are expected to apply to other classes of semiconductor nanomaterials.
Abstract: Thermoelectric materials, capable of converting a thermal gradient to an electric field and vice versa, could be useful in power generation and refrigeration. But the fabrication of the available high-performance thermoelectric materials is not easily scaled up to the volumes needed for large-scale heat energy scavenging applications. Nanostructuring improves thermoelectric capabilities of some materials, but good thermoelectric materials tend not to take readily to nanostructuring. How about silicon? It can be processed on a large scale but has poor thermoelectric properties. Two groups now show that silicon's thermoelectric properties can be vastly improved by structuring it into arrays of nanowires and carefully controlling nanowire morphology and doping. So with more development, silicon may have potential as a thermoelectric material. Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration1,2. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT—a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another3. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics4,5,6, such as Bi2Te3/Sb2Te3 thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm × 20 nm and 20 nm × 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT ≈ 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.

2,557 citations


Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

Journal ArticleDOI
29 May 2008-Nature
TL;DR: It is reported here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus and that molecules of the bacterial microbiota can mediate the critical balance between health and disease.
Abstract: Humans are colonized by multitudes of commensal organisms representing members of five of the six kingdoms of life; however, our gastrointestinal tract provides residence to both beneficial and potentially pathogenic microorganisms. Imbalances in the composition of the bacterial microbiota, known as dysbiosis, are postulated to be a major factor in human disorders such as inflammatory bowel disease. We report here that the prominent human symbiont Bacteroides fragilis protects animals from experimental colitis induced by Helicobacter hepaticus, a commensal bacterium with pathogenic potential. This beneficial activity requires a single microbial molecule (polysaccharide A, PSA). In animals harbouring B. fragilis not expressing PSA, H. hepaticus colonization leads to disease and pro-inflammatory cytokine production in colonic tissues. Purified PSA administered to animals is required to suppress pro-inflammatory interleukin-17 production by intestinal immune cells and also inhibits in vitro reactions in cell cultures. Furthermore, PSA protects from inflammatory disease through a functional requirement for interleukin-10-producing CD4+ T cells. These results show that molecules of the bacterial microbiota can mediate the critical balance between health and disease. Harnessing the immunomodulatory capacity of symbiosis factors such as PSA might potentially provide therapeutics for human inflammatory disorders on the basis of entirely novel biological principles.

Journal ArticleDOI
TL;DR: The Golden Oldie as discussed by the authors is an unretouched version of the Witten formulation of General Relativity, originally published as Chap. 7, pp. 227-264, in Gravitation: an introduction to current research, L. Witten, ed.
Abstract: This article—summarizing the authors’ then novel formulation of General Relativity—appeared as Chap. 7, pp. 227–264, in Gravitation: an introduction to current research, L. Witten, ed. (Wiley, New York, 1962), now long out of print. Intentionally unretouched, this republication as Golden Oldie is intended to provide contemporary accessibility to the flavor of the original ideas. Some typographical corrections have been made: footnote and page numbering have changed–but not section nor equation numbering, etc. Current institutional affiliations are encoded in: arnowitt@physics.tamu.edu, deser@brandeis.edu, misner@umd.edu.

Journal ArticleDOI
TL;DR: NanoString nCounter as mentioned in this paper is a system for gene expression measurement with high multiplex capability and digital readout, which can detect individual mRNA transcripts without enzymatic reactions or bias.
Abstract: We describe a technology, the NanoString nCounter gene expression system, which captures and counts individual mRNA transcripts. Advantages over existing platforms include direct measurement of mRNA expression levels without enzymatic reactions or bias, sensitivity coupled with high multiplex capability, and digital readout. Experiments performed on 509 human genes yielded a replicate correlation coefficient of 0.999, a detection limit between 0.1 fM and 0.5 fM, and a linear dynamic range of over 500-fold. Comparison of the NanoString nCounter gene expression system with microarrays and TaqMan PCR demonstrated that the nCounter system is more sensitive than microarrays and similar in sensitivity to real-time PCR. Finally, a comparison of transcript levels for 21 genes across seven samples measured by the nCounter system and SYBR Green real-time PCR demonstrated similar patterns of gene expression at all transcript levels.

Journal ArticleDOI
TL;DR: Atomistic modeling with ReaxFF provides a useful method for determining the initial events of oxidation of hydrocarbons under extreme conditions and can enhance existing combustion models.
Abstract: To investigate the initial chemical events associated with high-temperature gas-phase oxidation of hydrocarbons, we have expanded the ReaxFF reactive force field training set to include additional transition states and chemical reactivity of systems relevant to these reactions and optimized the force field parameters against a quantum mechanics (QM)-based training set. To validate the ReaxFF potential obtained after parameter optimization, we performed a range of NVT−MD simulations on various hydrocarbon/O2 systems. From simulations on methane/O2, o-xylene/O2, propene/O2, and benzene/O2 mixtures, we found that ReaxFF obtains the correct reactivity trend (propene > o-xylene > methane > benzene), following the trend in the C−H bond strength in these hydrocarbons. We also tracked in detail the reactions during a complete oxidation of isolated methane, propene, and o-xylene to a CO/CO2/H2O mixture and found that the pathways predicted by ReaxFF are in agreement with chemical intuition and our QM results. We o...

Journal ArticleDOI
TL;DR: A framework to investigate different aspects of the neurobiology of decision making is proposed to bring together recent findings in the field, highlight some of the most important outstanding problems, define a common lexicon that bridges the different disciplines that inform neuroeconomics, and point the way to future applications.
Abstract: Neuroeconomics is the study of the neurobiological and computational basis of value-based decision making. Its goal is to provide a biologically based account of human behaviour that can be applied in both the natural and the social sciences. This Review proposes a framework to investigate different aspects of the neurobiology of decision making. The framework allows us to bring together recent findings in the field, highlight some of the most important outstanding problems, define a common lexicon that bridges the different disciplines that inform neuroeconomics, and point the way to future applications.

Journal ArticleDOI
TL;DR: In this paper, the authors reported new precision measurements of the properties of our Galaxy's supermassive black hole, based on astrometric and radial velocity (RV; 2000-2007) measurements from the W. M. Keck 10m telescopes.
Abstract: We report new precision measurements of the properties of our Galaxy's supermassive black hole. Based on astrometric (1995-2007) and radial velocity (RV; 2000-2007) measurements from the W. M. Keck 10m telescopes, a fully unconstrained Keplerian orbit for the short-period star S0-2 provides values for the distance (R_0) of 8.0±0.6 kpc, the enclosed mass (M_(bh)) of 4.1±0.6x10^6 M☉ and the black hole's RV, which is consistent with zero with 30 km/s uncertainty. If the black hole is assumed to be at rest with respect to the Galaxy (e. g., has no massive companion to induce motion), we can further constrain the fit, obtaining R_0 = 8.4±0.4kpc and M_(bh) 4.5±0.4x10^6 M☉. More complex models constrain the extended dark mass distribution to be less than 3-4x10^5 M☉ within 0.01 pc, ~100 times higher than predictions from stellar and stellar remnant models. For all models, we identify transient astrometric shifts from source confusion (up to 5 times the astrometric error) and the assumptions regarding the black hole's radial motion as previously unrecognized limitations on orbital accuracy and the usefulness of fainter stars. Future astrometric and RV observations will remedy these effects. Our estimates of R_0 and the Galaxy's local rotation speed, which it is derived from combining R_0 with the apparent proper motion of Sgr A*, (θ_0 = 229±18 km/s), are compatible with measurements made using other methods. The increased black hole mass found in this study, compared to that determined using projected mass estimators, implies a longer period for the innermost stable orbit, longer resonant relaxation timescales for stars in the vicinity of the black hole and a better agreement with the M_(bh)-σ relation.

Journal ArticleDOI
Jennifer K. Adelman-McCarthy1, Marcel A. Agüeros2, S. Allam3, S. Allam1  +170 moreInstitutions (65)
TL;DR: The Sixth Data Release of the Sloan Digital Sky Survey (SDS) as discussed by the authors contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes.
Abstract: This paper describes the Sixth Data Release of the Sloan Digital Sky Survey. With this data release, the imaging of the northern Galactic cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes. The survey also includes 1.27 million spectra of stars, galaxies, quasars, and blank sky ( for sky subtraction) selected over 7425 deg2. This release includes much more stellar spectroscopy than was available in previous data releases and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point-spread function magnitudes of stars rather than fiber magnitudes. This gives more robust results in the presence of seeing variations, but also implies a change in the spectrophotometric scale, which is now brighter by roughly 0.35 mag. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and red-shifts are made available. Additional spectral outputs are made available, including calibrated spectra from individual 15 minute exposures and the sky spectrum subtracted from each exposure. We also quantify a recently recognized underestimation of the brightnesses of galaxies of large angular extent due to poor sky subtraction; the bias can exceed 0.2 mag for galaxies brighter than r = 14 mag.

Journal ArticleDOI
19 Jun 2008-Nature
TL;DR: Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization.
Abstract: Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

Journal ArticleDOI
TL;DR: A new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations is presented in this article.
Abstract: We present a new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations This "Union" compilation of 414 SNe Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well as the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST) A single, consistent, and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO) The constraint we obtain from supernovae on the dark energy density is ΩΛ = 0713+ 0027−0029(stat)+ 0036−0039(sys) , for a flat, ΛCDM universe Assuming a constant equation of state parameter, w, the combined constraints from SNe, BAO, and CMB give w = − 0969+ 0059−0063(stat)+ 0063−0066(sys) While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a w that varies with redshift In particular, the current SN data do not yet significantly constrain w at z > 1 With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available

Journal ArticleDOI
TL;DR: A review of the chemistry of the formation and continuing transformation of low-volatility species in the atmosphere can be found in this article, where the primary focus is chemical processes that can change the volatility of organic compounds: oxidation reactions in the gas phase, reaction in the particle phase, and reaction in either phase over several generations.

Journal ArticleDOI
TL;DR: In this article, the authors derived an improved activity-age calibration for F7-K2 dwarfs (0:5 mag < B -V < 0.9 mag).
Abstract: While the strong anticorrelation between chromospheric activity and age has led to the common use of the Ca II H and K emission index (R'_(HK) = L_(HK)/L_(bol)) as an empirical age estimator for solar-type dwarfs, existing activity-age relations produce implausible ages at both high and low activity levels.We have compiled R'_(HK) HK data from the literature for young stellar clusters, richly populating for the first time the young end of the activity-age relation. Combining the cluster activity data with modern cluster age estimates and analyzing the color dependence of the chromospheric activity age index,we derive an improved activity-age calibration for F7-K2 dwarfs (0:5 mag < B - V < 0.9 mag). We also present a more fundamentally motivated activity-age calibration that relies on conversion of R'_(HK) values through the Rossby number to rotation periods and then makes use of improved gyrochronology relations. We demonstrate that our new activity-age calibration has typical age precision of ~0.2 dex for normal solar-type dwarfs aged between the Hyades and the Sun (~0.6-4.5 Gyr). Inferring ages through activity-rotation-age relations accounts for some color-dependent effects and systematically improves the age estimates (albeit only slightly). We demonstrate that coronal activity as measured through the fractional X-ray luminosity (R_X = L_X/L_(bol)) has nearly the same age- and rotation inferring capability as chromospheric activity measured through R'_(HK). As a first application of our calibrations, we provide new activity-derived age estimates for a volume-limited sample of the 108 solar-type field dwarfs within 16 pc.

Journal ArticleDOI
28 Feb 2008-Nature
TL;DR: T titanium–zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2–1.5 GPa, K1C up to ∼170 MPa m1/2, and fracture energies for crack propagation as high as G1C ≈ 340 kJ’m-2.2 were reported.
Abstract: Metallic glasses have been the subject of intense scientific study since the 1960s, owing to their unique properties such as high strength, large elastic limit, high hardness, and amorphous microstructure. However, bulk metallic glasses have not been used in the high strength structural applications for which they have so much potential, owing to a highly localized failure mechanism that results in catastrophic failure during unconfined loading. In this thesis, bulk metallic glass matrix composites are designed with the combined benefits of high yield strengths and tensile ductility. This milestone is achieved by first investigating the length scale of the highly localized deformation, known as shear bands, that governs fracture in all metallic glasses. Under unconfined loading, a shear band grows to a certain length that is dependent on the fracture toughness of the glass before a crack nucleates and fracture occurs. Increasing the fracture toughness and ductility involves adding microstructural stabilization techniques that prevent shear bands from lengthening and promotes formation of multiple shear bands. To accomplish this, we develop in-situ formed bulk metallic glass matrix-composites with soft crystalline dendrites whose size and distribution are controlled through a novel semi-solid processing technique. The new alloys have a dramatically increased room-temperature ductility and a fracture toughness that appears to be similar to the toughest steels. Owing to their low modulus, the composites are therefore among the toughest known materials, a claim that has recently been confirmed independently by a fracture mechanics group. We extend our toughening strategy to a titanium-vanadium-based glass-dendrite composite system with density as low as 4.97 g/cm3. The new low-density composites rival the mechanical properties of the best structural crystalline Ti alloys. We demonstrate new processing techniques available in the highly toughened composites: room temperature cold rolling, work hardening, and thermoplastic forming. This thesis is a proven road map for developing metallic glass composites into real structural engineering materials.

Journal ArticleDOI
17 Jan 2008-Nature
TL;DR: Diverse molecular self-assembly and disassembly pathways are program using a ‘reaction graph’ abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif.
Abstract: In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self-assemble into prescribed target structures, rather than on engineering transient system dynamics. To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self-assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization, triggered self-assembly and molecular computation. Here, we program diverse molecular self-assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross-catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.

Journal ArticleDOI
TL;DR: Hydrothermal vents unite microbiology and geology to breathe new life into research into one of biology's most important questions — what is the origin of life?
Abstract: Hydrothermal vent systems, which can support life in the absence of photosynthesis, are today inhabited by animals that form symbioses with lithoautotrophic microorganisms from which they obtain chemical energy. These hydrothermal systems might resemble the earliest microbial ecosystems on the Earth. Here, Martin, Baross, Kelley and Russell review how understanding these complex systems might inform our understanding of the origins of life itself. Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H2–CO2 redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions — what is the origin of life?

Journal ArticleDOI
TL;DR: Much of the work which has so far only scratched the surface of this very fertile field of investigation is brought together, and the results illuminate many historic questions about hematopoiesis and immune function.
Abstract: Decades of research went into understanding immune cell development and function without awareness that consideration of a key element, microRNA (miRNA), was lacking. The discovery of miRNAs as regulators of developmental events in model organisms suggested to many investigators that miRNA might be involved in the immune system. In the past few years, widespread examination of this possibility has produced notable results. Results have shown that miRNAs affect mammalian immune cell differentiation, the outcome of immune responses to infection and the development of diseases of immunological origin. Some miRNAs repress expression of target proteins with well established functions in hematopoiesis. Here we bring together much of this work, which has so far only scratched the surface of this very fertile field of investigation, and show how the results illuminate many historic questions about hematopoiesis and immune function.

Journal ArticleDOI
28 Nov 2008-Science
TL;DR: Optical observations of an exoplanet candidate, Fomalhaut b, show that the planet's mass is at most three times that of Jupiter; a higher mass would lead to gravitational disruption of the belt, matching predictions of its location.
Abstract: Fomalhaut is a bright star 7.7 parsecs (25 light years) from Earth that harbors a belt of cold dust with a structure consistent with gravitational sculpting by an orbiting planet. Here, we present optical observations of an exoplanet candidate, Fomalhaut b. In the plane of the belt, Fomalhaut b lies approximately 119 astronomical units (AU) from the star and 18 AU from the dust belt, matching predictions. We detect counterclockwise orbital motion using Hubble Space Telescope observations separated by 1.73 years. Dynamical models of the interaction between the planet and the belt indicate that the planet's mass is at most three times that of Jupiter for the belt to avoid gravitational disruption. The flux detected at 0.8 m is also consistent with that of a planet with mass no greater than a few times that of Jupiter. The brightness at 0.6 micron and the lack of detection at longer wavelengths suggest that the detected flux may include starlight reflected off a circumplanetary disk, with dimension comparable to the orbits of the Galilean satellites. We also observed variability of unknown origin at 0.6 micron.

Journal ArticleDOI
TL;DR: In this article, the authors estimate that East Antarctica is close to a balanced mass budget, but large losses of ice occur in the narrow outlet channels of West Antarctic glaciers and at the northern tip of the Antarctic peninsula.
Abstract: Observed estimates of ice losses in Antarctica combined with regional modelling of ice accumulation in the interior suggest that East Antarctica is close to a balanced mass budget, but large losses of ice occur in the narrow outlet channels of West Antarctic glaciers and at the northern tip of the Antarctic peninsula.

Journal ArticleDOI
TL;DR: Evidence is provided for the ability of marketing actions to modulate neural correlates of experienced pleasantness and for the mechanisms through which the effect operates.
Abstract: Despite the importance and pervasiveness of marketing, almost nothing is known about the neural mechanisms through which it affects decisions made by individuals. We propose that marketing actions, such as changes in the price of a product, can affect neural representations of experienced pleasantness. We tested this hypothesis by scanning human subjects using functional MRI while they tasted wines that, contrary to reality, they believed to be different and sold at different prices. Our results show that increasing the price of a wine increases subjective reports of flavor pleasantness as well as blood-oxygen-level-dependent activity in medial orbitofrontal cortex, an area that is widely thought to encode for experienced pleasantness during experiential tasks. The paper provides evidence for the ability of marketing actions to modulate neural correlates of experienced pleasantness and for the mechanisms through which the effect operates.

Journal ArticleDOI
04 Sep 2008-Nature
TL;DR: Observations at a wavelength of 1.3 mm set a size of microarcseconds on the intrinsic diameter of Sagittarius A*, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.
Abstract: Using Very Long Baseline Interferometry (VLBI) at the relatively short radio wavelength of 13 mm, a new intrinsic size estimate has been obtained for Sagittarius A*, the supermassive black hole candidate at the centre of the Milky Way The resulting lower limit on the size of Sgr A* is less than the predicted size of the event horizon of the presumed black hole, suggesting that Sgr A* emissions centre not on the black hole itself but on the surrounding accretion flow VLBI observations of the Galactic Centre at around 13 mm, less influenced by interstellar scattering than those made at longer wavelengths, open a new window onto black-hole physics that will become even more sensitive as new VLBI stations are built The cores of most large galaxies are thought to harbour super massive black holes Sagittarius A*, the compact source of radio, infrared and x-ray emission at the centre of the Milky Way, is the closest example of this phenomenon This paper reports observations that set a limit less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation1 Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun2,3 A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole Radio observations at wavelengths of 35 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering4,5,6,7 Here we report observations at a wavelength of 13 mm that set a size of microarcseconds on the intrinsic diameter of Sgr A* This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow