scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Redshift. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.
Topics: Galaxy, Redshift, Population, Star formation, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: Conventional approaches to chemical sensors have traditionally made use of a “lock-and-key” design, wherein a specific receptor is synthesized in order to strongly and highly selectively bind the analyte of interest.
Abstract: Conventional approaches to chemical sensors have traditionally made use of a “lock-and-key” design, wherein a specific receptor is synthesized in order to strongly and highly selectively bind the analyte of interest.1-6 A related approach involves exploiting a general physicochemical effect selectively toward a single analyte, such as the use of the ionic effect in the construction of a pH electrode. In the first approach, selectivity is achieved through recognition of the analyte at the receptor site, and in the second, selectivity is achieved through the transduction process in which the method of detection dictates which species are sensed. Such approaches are appropriate when a specific target compound is to be identified in the presence of controlled backgrounds and interferences. However, this type of approach requires the synthesis of a separate, highly selective sensor for each analyte to be detected. In addition, this type of approach is not particularly useful for analyzing, classifying, or assigning human value judgments to the composition of complex vapor mixtures such as perfumes, beers, foods, mixtures of solvents, etc.

1,192 citations

Journal ArticleDOI
TL;DR: In this paper, a sample of 87 rest-frame UV-selected star-forming galaxies with mean spectroscopic redshift z = 2.26 ± 0.17 was used to study the correlation between metallicity and stellar mass at high redshift.
Abstract: We use a sample of 87 rest-frame UV-selected star-forming galaxies with mean spectroscopic redshift z = 2.26 ± 0.17 to study the correlation between metallicity and stellar mass at high redshift. Using stellar masses determined from SED fitting to observed 0.3-8 μm photometry, we divide the sample into six bins in stellar mass and construct six composite Hα + [N ] spectra from all of the objects in each bin. We estimate the mean oxygen abundance in each bin from the [N II]/Hα ratio and find a monotonic increase in metallicity with increasing stellar mass, from 12 + log(O/H) < 8.2 for galaxies with M = 2.7 × 109 M☉ to 12 + log(O/H) = 8.6 for galaxies with M = 1.0 × 1011 M☉. We use the empirical relation between SFR density and gas density to estimate the gas fractions of the galaxies, finding an increase in gas fraction with decreasing stellar mass. These gas fractions, combined with the observed metallicities, allow the estimation of the effective yield yeff as a function of stellar mass; in constrast to observations in the local universe, which show a decrease in yeff with decreasing baryonic mass, we find a slight increase. Such a variation of metallicity with gas fraction is best fitted by a model with supersolar yield and an outflow rate ~4 times higher than the SFR. We conclude that the mass-metallicity relation at high redshift is driven by the increase in metallicity as the gas fraction decreases through star formation and is likely modulated by metal loss from strong outflows in galaxies of all masses.

1,191 citations

Journal ArticleDOI
10 Aug 2007-Science
TL;DR: A highly specific and sensitive optical sensor based on an ultrahigh quality (Q) factor (Q > 108) whispering-gallery microcavity is reported and label-free, single-molecule detection of interleukin-2 was demonstrated in serum.
Abstract: Current single-molecule detection techniques require labeling the target molecule. We report a highly specific and sensitive optical sensor based on an ultrahigh quality (Q) factor (Q > 10^8) whispering-gallery microcavity. The silica surface is functionalized to bind the target molecule; binding is detected by a resonant wavelength shift. Single-molecule detection is confirmed by observation of single-molecule binding events that shift the resonant frequency, as well as by the statistics for these shifts over many binding events. These shifts result from a thermo-optic mechanism. Additionally, label-free, single-molecule detection of interleukin-2 was demonstrated in serum. These experiments demonstrate a dynamic range of 10^(12) in concentration, establishing the microcavity as a sensitive and versatile detector.

1,189 citations

Journal ArticleDOI
B. P. Abbott1, R. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1271 moreInstitutions (145)
TL;DR: In 2019, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9 and the Virgo detector was also taking data that did not contribute to detection due to a low SINR but were used for subsequent parameter estimation as discussed by the authors.
Abstract: On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810.

1,189 citations

Journal ArticleDOI
TL;DR: Measurements of the birefringence of a single atom strongly coupled to a high-finesse optical resonator are reported, with nonlinear phase shifts observed for an intracavity photon number much less than one.
Abstract: Measurements of the birefringence of a single atom strongly coupled to a high-finesse optical resonator are reported, with nonlinear phase shifts observed for an intracavity photon number much less than one. A proposal to utilize the measured conditional phase shifts for implementing quantum logic via a quantum-phase gate (QPG) is considered. Within the context of a simple model for the field transformation, the parameters of the "truth table" for the QPG are determined.

1,189 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,684
20205,519
20195,321
20185,133