scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: Responses from neurons in area V1 of the alert macaque monkey to textured patterns modeled after stimuli used in psychophysical experiments of pop- out are consistent with a possible functional role of V1 cells in the mediation of perceptual pop-out and in the segregation of texture borders.
Abstract: 1. We recorded responses from neurons in area V1 of the alert macaque monkey to textured patterns modeled after stimuli used in psychophysical experiments of pop-out. Neuronal responses to a single...

1,039 citations

Journal ArticleDOI
TL;DR: The identification of the Drosophila miRNA mir-14 as a cell death suppressor is reported, and possible relationships between these phenotypes are discussed.

1,039 citations

Journal ArticleDOI
TL;DR: The results support the notion that ongoing oscillations shape perception by providing a temporal reference frame for neural codes that rely on precise spike timing, and indicate that the visual detection threshold fluctuates over time along with the phase of ongoing EEG activity.
Abstract: Oscillations are ubiquitous in electrical recordings of brain activity. While the amplitude of ongoing oscillatory activity is known to correlate with various aspects of perception, the influence of oscillatory phase on perception remains unknown. In particular, since phase varies on a much faster timescale than the more sluggish amplitude fluctuations, phase effects could reveal the fine-grained neural mechanisms underlying perception. We presented brief flashes of light at the individual luminance threshold while EEG was recorded. Although the stimulus on each trial was identical, subjects detected approximately half of the flashes (hits) and entirely missed the other half (misses). Phase distributions across trials were compared between hits and misses. We found that shortly before stimulus onset, each of the two distributions exhibited significant phase concentration, but at different phase angles. This effect was strongest in the theta and alpha frequency bands. In this time-frequency range, oscillatory phase accounted for at least 16% of variability in detection performance and allowed the prediction of performance on the single-trial level. This finding indicates that the visual detection threshold fluctuates over time along with the phase of ongoing EEG activity. The results support the notion that ongoing oscillations shape our perception, possibly by providing a temporal reference frame for neural codes that rely on precise spike timing.

1,038 citations

Proceedings ArticleDOI
01 Jan 1984
TL;DR: New algorithms to trace objects represented by densities within a volume grid, e.g. clouds, fog, flames, dust, particle systems, suitable for use in computer graphics are presented.
Abstract: This paper presents new algorithms to trace objects represented by densities within a volume grid, e.g. clouds, fog, flames, dust, particle systems. We develop the light scattering equations, discuss previous methods of solution, and present a new approximate solution to the full three-dimensional radiative scattering problem suitable for use in computer graphics. Additionally we review dynamical models for clouds used to make an animated movie.

1,038 citations

Journal ArticleDOI
TL;DR: A smoothing technique and an accelerated first-order algorithm are applied and it is demonstrated that this approach is ideally suited for solving large-scale compressed sensing reconstruction problems and is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters.
Abstract: Accurate signal recovery or image reconstruction from indirect and possibly undersampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. This paper applies a smoothing technique and an accelerated first-order algorithm, both from Nesterov [Math. Program. Ser. A, 103 (2005), pp. 127-152], and demonstrates that this approach is ideally suited for solving large-scale compressed sensing reconstruction problems as (1) it is computationally efficient, (2) it is accurate and returns solutions with several correct digits, (3) it is flexible and amenable to many kinds of reconstruction problems, and (4) it is robust in the sense that its excellent performance across a wide range of problems does not depend on the fine tuning of several parameters. Comprehensive numerical experiments on realistic signals exhibiting a large dynamic range show that this algorithm compares favorably with recently proposed state-of-the-art methods. We also apply the algorithm to solve other problems for which there are fewer alternatives, such as total-variation minimization and convex programs seeking to minimize the $\ell_1$ norm of $Wx$ under constraints, in which $W$ is not diagonal. The code is available online as a free package in the MATLAB language.

1,038 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,682
20205,519
20195,321
20185,133