scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Redshift. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.
Topics: Galaxy, Redshift, Population, Star formation, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors apply the Feynman pathintegral method to the quantum mechanics of a scalar particle moving in the background geometry of a Schwarzschild black hole, and show that the amplitude for a black hole to emit scalar particles in a particular mode is expressed as a sum over paths connecting the future singularity and infinity.
Abstract: The Feynman path-integral method is applied to the quantum mechanics of a scalar particle moving in the background geometry of a Schwarzschild black hole. The amplitude for the black hole to emit a scalar particle in a particular mode is expressed as a sum over paths connecting the future singularity and infinity. By analytic continuation in the complexified Schwarzschild space this amplitude is related to that for a particle to propagate from the past singularity to infinity and hence by time reversal to the amplitude for the black hole to absorb a particle in the same mode. The form of the connection between the emission and absorption probabilities shows that a Schwarzschild black hole will emit scalar particles with a thermal spectrum characterized by a temperature which is related to its mass, $M$, by $T=\frac{\ensuremath{\hbar}{c}^{3}}{8\ensuremath{\pi}}\mathrm{GMk}$. Thereby a conceptually simple derivation of black-hole radiance is obtained. The extension of this result to other spin fields and other black-hole geometries is discussed.

962 citations

Journal ArticleDOI
TL;DR: In this paper, three regimes of liquid flow over a body are defined, namely: (a) noncavitating flow, (b) cavitating flow with a relatively small number of cavitation bubbles in the field of flow, and (c) caviting flow with one large cavity about the body.
Abstract: Three regimes of liquid flow over a body are defined, namely: (a) noncavitating flow; (b) cavitating flow with a relatively small number of cavitation bubbles in the field of flow; and (c) cavitating flow with a single large cavity about the body. The assumption is made that, for the second regime of flow, the pressure coefficient in the flow field is no different from that in the noncavitating flow. On this basis, the equation of motion for the growth and collapse of a cavitation bubble containing vapor is derived and applied to experimental observations on such bubbles. The limitations of this equation of motion are pointed out, and include the effect of the finite rate of evaporation and condensation, and compressibility of vapor and liquid. A brief discussion of the role of "nuclei" in the liquid in the rate of formation of cavitation bubbles is also given.

960 citations

Journal ArticleDOI
TL;DR: The translation from concept to clinic for the first experimental therapeutic to provide targeted delivery of synthetic, small interfering RNA (siRNA) in humans is described and the designed features of this experimental therapeutic are described.
Abstract: Experimental therapeutics developed to exploit RNA interference (RNAi) are now in clinical studies. Here, the translation from concept to clinic for the first experimental therapeutic to provide targeted delivery of synthetic, small interfering RNA (siRNA) in humans is described. This targeted, nanoparticle formulation of siRNA, denoted as CALAA-01, consists of a cyclodextrin-containing polymer (CDP), a polythethylene glycol (PEG) steric stabilization agent, and human transferrin (Tf) as a targeting ligand for binding to transferrin receptors (TfR) that are typically upregulated on cancer cells. The four component formulation is self-assembled into nanoparticles in the pharmacy and administered intravenously (iv) to patients. The designed features of this experimental therapeutic are described, and their functions illustrated.

958 citations

Journal ArticleDOI
TL;DR: By enabling content mixing between mitochondria, fusion and fission serve to maintain a homogeneous and healthy mitochondrial population and lead to improvements in human health.
Abstract: Mitochondria are dynamic organelles that continually undergo fusion and fission. These opposing processes work in concert to maintain the shape, size, and number of mitochondria and their physiological function. Some of the major molecules mediating mitochondrial fusion and fission in mammals have been discovered, but the underlying molecular mechanisms are only partially unraveled. In particular, the cast of characters involved in mitochondrial fission needs to be clarified. By enabling content mixing between mitochondria, fusion and fission serve to maintain a homogeneous and healthy mitochondrial population. Mitochondrial dynamics has been linked to multiple mitochondrial functions, including mitochondrial DNA stability, respiratory capacity, apoptosis, response to cellular stress, and mitophagy. Because of these important functions, mitochondrial fusion and fission are essential in mammals, and even mild defects in mitochondrial dynamics are associated with disease. A better understanding of these processes likely will ultimately lead to improvements in human health.

958 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,684
20205,519
20195,321
20185,133