scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the as-built instrument characteristics and the application of MISR to remote sensing of the Earth is provided.
Abstract: The Multi-angle Imaging SpectroRadiometer (MISR) instrument is scheduled for launch aboard the first of the Earth Observing System (EOS) spacecraft, EOS-AM1. MISR will provide global, radiometrically calibrated, georectified, and spatially coregistered imagery at nine discrete viewing angles and four visible/near-infrared spectral bands. Algorithms specifically developed to capitalize on this measurement strategy will be used to retrieve geophysical products for studies of clouds, aerosols, and surface radiation. This paper provides an overview of the as-built instrument characteristics and the application of MISR to remote sensing of the Earth.

947 citations

Proceedings ArticleDOI
01 Oct 1995
TL;DR: This paper provides a plausible physical explanation for the occurrence of self-similarity in high-speed network traffic based on convergence results for processes that exhibit high variability and is supported by detailed statistical analyses of real-time traffic measurements from Ethernet LAN's at the level of individual sources.
Abstract: A number of recent empirical studies of traffic measurements from a variety of working packet networks have convincingly demonstrated that actual network traffic is self-similar or long-range dependent in nature (i.e., bursty over a wide range of time scales) - in sharp contrast to commonly made traffic modeling assumptions. In this paper, we provide a plausible physical explanation for the occurrence of self-similarity in high-speed network traffic. Our explanation is based on convergence results for processes that exhibit high variability (i.e., infinite variance) and is supported by detailed statistical analyses of real-time traffic measurements from Ethernet LAN's at the level of individual sources.Our key mathematical result states that the superposition of many ON/OFF sources (also known as packet trains) whose ON-periods and OFF-periods exhibit the Noah Effect (i.e., have high variability or infinite variance) produces aggregate network traffic that features the Joseph Effect (i.e., is self-similar or long-range dependent). There is, moreover, a simple relation between the parameters describing the intensities of the Noah Effect (high variability) and the Joseph Effect (self-similarity). An extensive statistical analysis of two sets of high time-resolution traffic measurements from two Ethernet LAN's (involving a few hundred active source-destination pairs) confirms that the data at the level of individual sources or source-destination pairs are consistent with the Noah Effect. We also discuss implications of this simple physical explanation for the presence of self-similar traffic patterns in modern high-speed network traffic for (i) parsimonious traffic modeling (ii) efficient synthetic generation of realistic traffic patterns, and (iii) relevant network performance and protocol analysis.

946 citations

Journal ArticleDOI
TL;DR: In this article, high precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm, were reported.
Abstract: We report high precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm. We find that the photometric dimming during transit in a bandpass centered on the sodium feature is deeper by (2.32 +/- 0.57) x 10^{-4} relative to simultaneous observations of the transit in adjacent bands. We interpret this additional dimming as absorption from sodium in the planetary atmosphere, as recently predicted from several theoretical modeling efforts. Our model for a cloudless planetary atmosphere with a solar abundance of sodium in atomic form predicts more sodium absorption than we observe. There are several possibilities that may account for this reduced amplitude, including reaction of atomic sodium into molecular gases and/or condensates, photoionization of sodium by the stellar flux, a low primordial abundance of sodium, or the presence of clouds high in the atmosphere.

946 citations

Journal ArticleDOI
TL;DR: In this paper, an algorithm for measuring the dimension of a strange attractor from a time series is applied both to autocorrelated Gaussian noise and to a dynamical system.
Abstract: An algorithm devised for measuring the dimension of a strange attractor from a time series is applied both to autocorrelated Gaussian noise and to a dynamical system. It is analytically shown that a finite sequence of stochastic data---where by ``finite'' it is meant that N2${\ensuremath{\tau}}^{m/2}$, where N is the number of points in the sequence, \ensuremath{\tau} is the autocorrelation time (in units of sampling period), and m is the embedding dimension---exhibits anomalous structure in its correlation integral. The anomaly is seen numerically in both stochastic and dynamical data. Unrecognized, it can lead to unnecessarily inaccurate and possibly spurious estimates of dimension. We propose a slight modification of the standard algorithm which eliminates this difficulty.

942 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,682
20205,519
20195,321
20185,133