scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Redshift. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.
Topics: Galaxy, Redshift, Population, Star formation, Stars


Papers
More filters
Journal ArticleDOI
Joseph Adams1, Madan M. Aggarwal2, Zubayer Ahammed3, J. Amonett4  +363 moreInstitutions (46)
TL;DR: In this paper, the most important experimental results from the first three years of nucleus-nucleus collision studies at RHIC were reviewed, with emphasis on results of the STAR experiment.

2,750 citations

Journal ArticleDOI
06 Aug 1998-Nature
TL;DR: The design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules that create specific periodic patterns on the nanometre scale are reported.
Abstract: Molecular self-assembly presents a `bottom-up' approach to the fabrication of objects specified with nanometre precision. DNA molecular structures and intermolecular interactions are particularly amenable to the design and synthesis of complex molecular objects. We report the design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules. Intermolecular interactions between the structural units are programmed by the design of `sticky ends' that associate according to Watson-Crick complementarity, enabling us to create specific periodic patterns on the nanometre scale. The patterned crystals have been visualized by atomic force microscopy.

2,713 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that at the base of the crack in the direction of its prolongation, the principal stresses are equal, thus tending toward a two-dimensional (two-dimensional) hydrostatic tension.
Abstract: In an earlier paper it was suggested that a knowledge of the elastic-stress variation in the neighborhood of an angular corner of an infinite plate would perhaps be of value in analyzing the stress distribution at the base of a V-notch. As a part of a more general study, the specific case of a zero-angle notch, or crack, was carried out to supplement results obtained by other investigators. This paper includes remarks upon the antisymmetric, as well as symmetric, stress distribution, and the circumferential distribution of distortion strain-energy density. For the case of a symmetrical loading about the crack, it is shown that the energy density is not a maximum along the direction of the crack hut is one third higher at an angle ± cos^(-1) (1/3); i.e., approximately ±70 deg. It is shown that at the base of the crack in the direction of its prolongation, the principal stresses are equal, thus tending toward a state of (two-dimensional) hydrostatic tension. As the distance from the point of the crack increases, the distortion strain energy increases, suggesting the possibility of yielding ahead of the crack as well as ±70 deg to the sides. The maximum principal tension stress occurs on ±60 deg rays. For the antisymmetrical stress distribution the distortion strain energy is a relative maximum along the crack and 60 per cent lower ± 85 deg to the sides.

2,693 citations

Book ChapterDOI
01 Jan 1965
TL;DR: The evaluation of the amount of differences between two organisms as derived from sequences in structural genes or in their polypeptide translation is likely to lead to quantities different from those obtained on the basis of observations made at any other, higher level of biological integration.
Abstract: Publisher Summary Informational macromolecules, or semantides, play a unique role in determining the properties of living matter in the perspectives that differ by the magnitude of time required for the processes involved—the short-timed biochemical reaction, the medium-timed ontogenetic event, and the long-timed evolutionary event. Although the slower processes should be broken down into linked faster processes, if one loses sight of the slower processes one also loses the links between the component faster processes. The relative importance of the contributions to evolution of changes in functional properties of polypeptides through their structural modification on the one hand, and of changes in the timing and the rate of synthesis of these polypeptides on the other hand, constitutes a problem that justifies the study of evolution at the level of informational macromolecules. The evaluation of the amount of differences between two organisms as derived from sequences in structural genes or in their polypeptide translation is likely to lead to quantities different from those obtained on the basis of observations made at any other, higher level of biological integration.

2,677 citations

Journal ArticleDOI
09 Sep 2004-Nature
TL;DR: BSCF is presented as a new cathode material for reduced-temperature SOFC operation and demonstrated that BSCF is ideally suited to ‘single-chamber’ fuel-cell operation, where anode and cathode reactions take place within the same physical chamber.
Abstract: Fuel cells directly and efficiently convert chemical energy to electrical energy. Of the various fuel cell types, solid-oxide fuel cells (SOFCs) combine the benefits of environmentally benign power generation with fuel flexibility. However, the necessity for high operating temperatures (800–1,000 °C) has resulted in high costs and materials compatibility challenges. As a consequence, significant effort has been devoted to the development of intermediate-temperature (500–700 °C) SOFCs. A key obstacle to reduced-temperature operation of SOFCs is the poor activity of traditional cathode materials for electrochemical reduction of oxygen in this temperature regime2. Here we present Ba_(0.5_Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-delta) (BSCF) as a new cathode material for reduced-temperature SOFC operation. BSCF, incorporated into a thin-film doped ceria fuel cell, exhibits high power densities (1,010 mW cm^(-2) and 402 mW cm^(-2) at 600 °C and 500 °C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. We further demonstrate that BSCF is ideally suited to 'single-chamber' fuel-cell operation, where anode and cathode reactions take place within the same physical chamber. The high power output of BSCF cathodes results from the high rate of oxygen diffusion through the material. By enabling operation at reduced temperatures, BSCF cathodes may result in widespread practical implementation of SOFCs.

2,672 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,684
20205,519
20195,321
20185,133