scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: The Golden Oldie as discussed by the authors is an unretouched version of the Witten formulation of General Relativity, originally published as Chap. 7, pp. 227-264, in Gravitation: an introduction to current research, L. Witten, ed.
Abstract: This article—summarizing the authors’ then novel formulation of General Relativity—appeared as Chap. 7, pp. 227–264, in Gravitation: an introduction to current research, L. Witten, ed. (Wiley, New York, 1962), now long out of print. Intentionally unretouched, this republication as Golden Oldie is intended to provide contemporary accessibility to the flavor of the original ideas. Some typographical corrections have been made: footnote and page numbering have changed–but not section nor equation numbering, etc. Current institutional affiliations are encoded in: arnowitt@physics.tamu.edu, deser@brandeis.edu, misner@umd.edu.

2,050 citations

Journal ArticleDOI
09 Apr 2015-Cell
TL;DR: It is demonstrated that Indigenous spore-forming bacteria from the mouse and human microbiota promote 5-HT biosynthesis from colonic enterochromaffin cells (ECs), which supply 5- HT to the mucosa, lumen, and circulating platelets and elevating luminal concentrations of particular microbial metabolites increases colonic and blood5-HT in germ-free mice.

2,047 citations

Proceedings ArticleDOI
08 Jun 1976
TL;DR: A new canonical circuit model is proposed, whose fixed topology contains all the essential inputr-output and control properties of any dc-todc switching converter, regardless of its detailed configuration, and by which different converters can be characterized in the form of a table conveniently stored in a computer data bank to provide a useful tool for computer aided design and optimization.
Abstract: A method for modelling switching-converter power stages is developed, whose starting point is the unified state-space representation of the switched networks and whose end result is either a complete state-space description or its equivalent small-signal low<-f requency linear circuit model. A new canonical circuit model is proposed, whose fixed topology contains all the essential inputr-output and control properties of any dc-todc switching converter, regardless of its detailed configuration, and by which different converters can be characterized in the form of a table conveniently stored in a computer data bank to provide a useful tool for computer aided design and optimization. The new canonical circuit model predicts that, in general;switching action introduces both zeros and poles into the duty ratio to output transfer function in addition to those from the effective filter network.

2,042 citations

Journal ArticleDOI
17 Apr 1992-Science
TL;DR: The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy.
Abstract: The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.

2,032 citations

Journal ArticleDOI
TL;DR: Electrochemistry-based sensors offer sensitivity, selectivity and low cost for the detection of selected DNA sequences or mutated genes associated with human disease.
Abstract: Electrochemistry-based sensors offer sensitivity, selectivity and low cost for the detection of selected DNA sequences or mutated genes associated with human disease. DNA-based electrochemical sensors exploit a range of different chemistries, but all take advantage of nanoscale interactions between the target in solution, the recognition layer and a solid electrode surface. Numerous approaches to electrochemical detection have been developed, including direct electrochemistry of DNA, electrochemistry at polymer-modified electrodes, electrochemistry of DNA-specific redox reporters, electrochemical amplifications with nanoparticles, and electrochemical devices based on DNA-mediated charge transport chemistry.

2,030 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,682
20205,519
20195,321
20185,133