scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.


Papers
More filters
Journal ArticleDOI
18 Jun 2020-Nature
TL;DR: Most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity, and rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Abstract: During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S) Although there is no vaccine, it is likely that antibodies will be essential for protection However, little is known about the human antibody response to SARS-CoV-21-5 Here we report on 149 COVID-19 convalescent individuals Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres: less than 1:50 in 33% and below 1:1,000 in 79%, while only 1% showed titres above 1:5,000 Antibody sequencing revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals Despite low plasma titres, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50 values) as low as single digit nanograms per millitre Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective

1,675 citations

Journal ArticleDOI
TL;DR: In this article, it is suggested that the group is in fact U(3)×U(3), exemplified by the symmetrical Sakata model, and the symmetrized Sakata models are used to define the structure of baryons and mesons.
Abstract: The system of strongly interacting particles is discussed, with electromagnetism, weak interactions, and gravitation considered as perturbations. The electric current jα, the weak current Jα, and the gravitational tensor θαβ are all well-defined operators, with finite matrix elements obeying dispersion relations. To the extent that the dispersion relations for matrix elements of these operators between the vacuum and other states are highly convergent and dominated by contributions from intermediate one-meson states, we have relations like the Goldberger-Treiman formula and universality principles like that of Sakurai according to which the ρ meson is coupled approximately to the isotopic spin. Homogeneous linear dispersion relations, even without subtractions, do not suffice to fix the scale of these matrix elements; in particular, for the nonconserved currents, the renormalization factors cannot be calculated, and the universality of strength of the weak interactions is undefined. More information than just the dispersion relations must be supplied, for example, by field-theoretic models; we consider, in fact, the equal-time commutation relations of the various parts of j4 and J4. These nonlinear relations define an algebraic system (or a group) that underlies the structure of baryons and mesons. It is suggested that the group is in fact U(3)×U(3), exemplified by the symmetrical Sakata model. The Hamiltonian density θ44 is not completely invariant under the group; the noninvariant part transforms according to a particular representation of the group; it is possible that this information also is given correctly by the symmetrical Sakata model. Various exact relations among form factors follow from the algebraic structure. In addition, it may be worthwhile to consider the approximate situation in which the strangeness-changing vector currents are conserved and the Hamiltonian is invariant under U(3); we refer to this limiting case as "unitary symmetry." In the limit, the baryons and mesons form degenerate supermultiplets, which break up into isotopic multiplets when the symmetry-breaking term in the Hamiltonian is "turned on." The mesons are expected to form unitary singlets and octets; each octet breaks up into a triplet, a singlet, and a pair of strange doublets. The known pseudoscalar and vector mesons fit this pattern if there exists also an isotopic singlet pseudoscalar meson χ0. If we consider unitary symmetry in the abstract rather than in connection with a field theory, then we find, as an attractive alternative to the Sakata model, the scheme of Ne'eman and Gell-Mann, which we call the "eightfold way"; the baryons N, Λ, Σ, and Ξ form an octet, like the vector and pseudoscalar meson octets, in the limit of unitary symmetry. Although the violations of unitary symmetry must be quite large, there is some hope of relating certain violations to others. As an example of the methods advocated, we present a rough calculation of the rate of K+→μ++ν in terms of that of π+→μ++ν.

1,673 citations

Journal ArticleDOI
TL;DR: The relations for the dispersion and the group velocity of the photonic band of the CROW's are obtained and it is found that they are solely characterized by coupling factor k(1) .
Abstract: We propose a new type of optical waveguide that consists of a sequence of coupled high- Q resonators. Unlike other types of optical waveguide, waveguiding in the coupled-resonator optical waveguide (CROW) is achieved through weak coupling between otherwise localized high- Q optical cavities. Employing a formalism similar to the tight-binding method in solid-state physics, we obtain the relations for the dispersion and the group velocity of the photonic band of the CROW's and find that they are solely characterized by coupling factor k 1 . We also demonstrate the possibility of highly efficient nonlinear optical frequency conversion and perfect transmission through bends in CROW's.

1,671 citations

Journal ArticleDOI
28 Jun 2006-Nature
TL;DR: Removal of Drosophila PINK1 homologue function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress, which underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.
Abstract: Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1 ; PARK6 ) and parkin (PARK2 ), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1–parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.

1,664 citations

Journal ArticleDOI
TL;DR: A critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude) was carried out by the authors under the auspices of the CODATA Task Group on Chemical Kinetics.
Abstract: This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10–55 km altitude). The work has been carried out by the authors under the auspices of the CODATA Task Group on Chemical Kinetics. Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an Appendix listing the available data on enthalpies of formation of the reactant and product species.

1,661 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,682
20205,519
20195,321
20185,133