scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.


Papers
More filters
Journal ArticleDOI
08 Jan 2016-Science
TL;DR: A record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals, arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe.
Abstract: Thermoelectric technology, harvesting electric power directly from heat, is a promising environmentally friendly means of energy savings and power generation. The thermoelectric efficiency is determined by the device dimensionless figure of merit ZT(dev), and optimizing this efficiency requires maximizing ZT values over a broad temperature range. Here, we report a record high ZT(dev) ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals. The exceptional performance arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe. SnSe is a robust thermoelectric candidate for energy conversion applications in the low and moderate temperature range.

1,542 citations

Journal ArticleDOI
TL;DR: The fact that the general decoding problem for linear codes and the general problem of finding the weights of a linear code are both NP-complete is shown strongly suggests, but does not rigorously imply, that no algorithm for either of these problems which runs in polynomial time exists.
Abstract: MEMBER, IEEE, AND HENK C. A. V~ TILBORG The fact that the general decoding problem for linear codes and the general problem of finding the weights of a linear code are both NP-complete is shown. This strongly suggests, but does not rigorously imply, that no algorithm for either of these problems which runs in polynomial time exists.

1,541 citations

Journal ArticleDOI
TL;DR: An ultrathin (260 nm) plasmonic super absorber consisting of a metal-insulator-metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays yields broadband and polarization-independent resonant light absorption over the entire visible spectrum.
Abstract: Resonant plasmonic and metamaterial structures allow for control of fundamental optical processes such as absorption, emission and refraction at the nanoscale. Considerable recent research has focused on energy absorption processes, and plasmonic nanostructures have been shown to enhance the performance of photovoltaic and thermophotovoltaic cells. Although reducing metallic losses is a widely sought goal in nanophotonics, the design of nanostructured 'black' super absorbers from materials comprising only lossless dielectric materials and highly reflective noble metals represents a new research direction. Here we demonstrate an ultrathin (260 nm) plasmonic super absorber consisting of a metal–insulator–metal stack with a nanostructured top silver film composed of crossed trapezoidal arrays. Our super absorber yields broadband and polarization-independent resonant light absorption over the entire visible spectrum (400–700 nm) with an average measured absorption of 0.71 and simulated absorption of 0.85. Proposed nanostructured absorbers open a path to realize ultrathin black metamaterials based on resonant absorption.

1,532 citations

Journal ArticleDOI
TL;DR: In this paper, a multimode analysis of phase-sensitive linear amplifiers is presented, where a lower bound on the noise carried by one quadrature phase of a signal and a corresponding lower limit on the amount of noise that a high-gain linear amplifier must add to another is established.
Abstract: How much noise does quantum mechanics require a linear amplifier to add to a signal it processes? An analysis of narrow-band amplifiers (single-mode input and output) yields a fundamental theorem for phase-insensitive linear amplifiers; it requires such an amplifier, in the limit of high gain, to add noise which, referred to the input, is at least as large as the half-quantum of zero-point fluctuations. For phase-sensitive linear amplifiers, which can respond differently to the two quadrature phases ("$cos\ensuremath{\omega}t$" and "$sin\ensuremath{\omega}t$"), the single-mode analysis yields an amplifier uncertainty principle---a lower limit on the product of the noises added to the two phases. A multimode treatment of linear amplifiers generalizes the single-mode analysis to amplifiers with nonzero bandwidth. The results for phase-insensitive amplifiers remain the same, but for phase-sensitive amplifiers there emerge bandwidth-dependent corrections to the single-mode results. Specifically, there is a bandwidth-dependent lower limit on the noise carried by one quadrature phase of a signal and a corresponding lower limit on the noise a high-gain linear amplifier must add to one quadrature phase. Particular attention is focused on developing a multimode description of signals with unequal noise in the two quadrature phases.

1,529 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,682
20205,519
20195,321
20185,133