scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Population. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.


Papers
More filters
Journal ArticleDOI
TL;DR: The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and some recent hypotheses relating to this issue are reviewed.

1,498 citations

Journal ArticleDOI
M. Punturo, M. R. Abernathy1, Fausto Acernese2, Benjamin William Allen3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia6, M. G. Beker7, N. Beveridge1, S. Birindelli8, Suvadeep Bose9, L. Bosi, S. Braccini, C. Bradaschia, Tomasz Bulik10, Enrico Calloni, G. Cella, E. Chassande Mottin6, Simon Chelkowski11, Andrea Chincarini, John A. Clark12, E. Coccia13, C. N. Colacino, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, G. De Luca, R. De Salvo15, T. Dent12, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets7, V. Fafone13, Paolo Falferi16, R. Flaminio17, J. Franc17, F. Frasconi, Andreas Freise11, Paul Fulda11, Jonathan R. Gair18, G. Gemme, A. Gennai11, A. Giazotto, Kostas Glampedakis19, M. Granata6, Hartmut Grote3, G. M. Guidi20, G. D. Hammond1, Mark Hannam21, Jan Harms22, D. Heinert23, Martin Hendry1, Ik Siong Heng1, Eric Hennes7, Stefan Hild1, J. H. Hough, Sascha Husa24, S. H. Huttner1, Gareth Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas19, Badri Krishnan24, M. Lorenzini, Harald Lück3, Ettore Majorana, Ilya Mandel25, Vuk Mandic22, I. W. Martin1, C. Michel17, Y. Minenkov13, N. Morgado17, Simona Mosca, B. Mours26, H. Müller–Ebhardt3, P. G. Murray1, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, D. Passuello, L. Pinard17, Rosa Poggiani28, P. Popolizio, Mirko Prato, P. Puppo, D. S. Rabeling7, P. Rapagnani29, Jocelyn Read24, Tania Regimbau8, H. Rehbein3, Stuart Reid1, Luciano Rezzolla24, F. Ricci29, F. Richard, A. Rocchi, Sheila Rowan1, Albrecht Rüdiger3, Benoit Sassolas17, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz, Paul Seidel, Alicia M. Sintes24, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin14, Andre Thüring3, J. F. J. van den Brand7, C. van Leewen7, M. van Veggel1, C. Van Den Broeck12, Alberto Vecchio11, John Veitch11, F. Vetrano20, A. Viceré20, Sergey P. Vyatchanin14, Benno Willke3, Graham Woan1, P. Wolfango30, Kazuhiro Yamamoto3 
TL;DR: The third-generation ground-based observatory Einstein Telescope (ET) project as discussed by the authors is currently in its design study phase, and it can be seen as the first step in this direction.
Abstract: Advanced gravitational wave interferometers, currently under realization, will soon permit the detection of gravitational waves from astronomical sources. To open the era of precision gravitational wave astronomy, a further substantial improvement in sensitivity is required. The future space-based Laser Interferometer Space Antenna and the third-generation ground-based observatory Einstein Telescope (ET) promise to achieve the required sensitivity improvements in frequency ranges. The vastly improved sensitivity of the third generation of gravitational wave observatories could permit detailed measurements of the sources' physical parameters and could complement, in a multi-messenger approach, the observation of signals emitted by cosmological sources obtained through other kinds of telescopes. This paper describes the progress of the ET project which is currently in its design study phase.

1,497 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the existence of two-component Pauli spinors satisfying a second order differential equation and the suggestion that in β decay these spinors act without gradient couplings leads to an essentially unique weak four-fermion coupling.
Abstract: The representation of Fermi particles by two-component Pauli spinors satisfying a second order differential equation and the suggestion that in β decay these spinors act without gradient couplings leads to an essentially unique weak four-fermion coupling. It is equivalent to equal amounts of vector and axial vector coupling with two-component neutrinos and conservation of leptons. (The relative sign is not determined theoretically.) It is taken to be "universal"; the lifetime of the μ agrees to within the experimental errors of 2%. The vector part of the coupling is, by analogy with electric charge, assumed to be not renormalized by virtual mesons. This requires, for example, that pions are also "charged" in the sense that there is a direct interaction in which, say, a π0 goes to π- and an electron goes to a neutrino. The weak decays of strange particles will result qualitatively if the universality is extended to include a coupling involving a Λ or Σ fermion. Parity is then not conserved even for those decays like K→2π or 3π which involve no neutrinos. The theory is at variance with the measured angular correlation of electron and neutrino in He6, and with the fact that fewer than 10^-4 pion decay into electron and neutrino.

1,494 citations

Journal ArticleDOI
TL;DR: In this paper, a finite element formulation for incompressible viscous flows in an arbitrarily mixed Lagrangian-Eulerian description is given for modeling the fluid subdomain of many fluid-solid interaction, and free surface problems.

1,494 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the geometrical phase factor found by Berry in his study of the quantum adiabatic theorem is precisely the holonomy in a Hermitian line bundle.
Abstract: It is shown that the "geometrical phase factor" recently found by Berry in his study of the quantum adiabatic theorem is precisely the holonomy in a Hermitian line bundle since the adiabatic theorem naturally defines a connection in such a bundle. This not only takes the mystery out of Berry's phase factor and provides calculational simple formulas, but makes a connection between Berry's work and that of Thouless et al. This connection allows the author to use Berry's ideas to interpret the integers of Thouless et al. in terms of eigenvalue degeneracies.

1,489 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,682
20205,519
20195,321
20185,133