scispace - formally typeset
Search or ask a question
Institution

Canadian Light Source

CompanySaskatoon, Saskatchewan, Canada
About: Canadian Light Source is a company organization based out in Saskatoon, Saskatchewan, Canada. It is known for research contribution in the topics: Catalysis & XANES. The organization has 360 authors who have published 1125 publications receiving 37514 citations. The organization is also known as: Canadian Light Source Inc..


Papers
More filters
Journal ArticleDOI
TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Abstract: Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

4,898 citations

Journal ArticleDOI
TL;DR: The synthesis of ultrathin nickel-iron layered double hydroxide nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs) induced the formation of NiFe-LDH, which exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.
Abstract: Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal–air batteries. Here, we report the synthesis of ultrathin nickel–iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

2,320 citations

Journal ArticleDOI
15 Apr 2016-Science
TL;DR: A room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution that exhibit the lowest overpotential reported at 10 milliamperes per square centimeter in alkaline electrolyte and shows no evidence of degradation after more than 500 hours of operation.
Abstract: Earth-abundant first-row (3d) transition metal-based catalysts have been developed for the oxygen-evolution reaction (OER); however, they operate at overpotentials substantially above thermodynamic requirements. Density functional theory suggested that non-3d high-valency metals such as tungsten can modulate 3d metal oxides, providing near-optimal adsorption energies for OER intermediates. We developed a room-temperature synthesis to produce gelled oxyhydroxides materials with an atomically homogeneous metal distribution. These gelled FeCoW oxyhydroxides exhibit the lowest overpotential (191 millivolts) reported at 10 milliamperes per square centimeter in alkaline electrolyte. The catalyst shows no evidence of degradation after more than 500 hours of operation. X-ray absorption and computational studies reveal a synergistic interplay between tungsten, iron, and cobalt in producing a favorable local coordination environment and electronic structure that enhance the energetics for OER.

1,777 citations

Journal ArticleDOI
TL;DR: N nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum are reported.
Abstract: There is ongoing research into new electrocatalysts for hydrogen production from water splitting. Here, the authors report the electrocatalytic performance of nickel/nickel oxide heterostructures on carbon nanotubes, and are able to assemble a water electrolyzer operated by a single-cell 1.5 V battery.

1,345 citations

Journal ArticleDOI
TL;DR: The versatility of the perovskite structure is exploited to search for oxide catalysts that are both active and stable and can be explained by having the O p-band centre neither too close nor too far from the Fermi level, which is computed from ab initio studies.
Abstract: The electronic structure of transition metal oxides governs the catalysis of many central reactions for energy storage applications such as oxygen electrocatalysis. Here we exploit the versatility of the perovskite structure to search for oxide catalysts that are both active and stable. We report double perovskites (Ln₀.₅Ba₀.₅)CoO(₃-δ) (Ln=Pr, Sm, Gd and Ho) as a family of highly active catalysts for the oxygen evolution reaction upon water oxidation in alkaline solution. These double perovskites are stable unlike pseudocubic perovskites with comparable activities such as Ba₀.₅Sr₀.₅Co₀.₈Fe₀.₂O(₃-δ) which readily amorphize during the oxygen evolution reaction. The high activity and stability of these double perovskites can be explained by having the O p-band centre neither too close nor too far from the Fermi level, which is computed from ab initio studies.

1,150 citations


Authors

Showing all 362 results

NameH-indexPapersCitations
Gianluigi A. Botton6248723598
Christian H. Back5224310058
Jigang Zhou5212820454
Yongfeng Hu5033811458
Mohammad Norouzi Banis481268237
Georg Woltersdorf421484928
Nicola Pusterla413136056
Peter R. Norton401844945
Jian Wang381449309
Tom Regier369814501
Jian Wang361118442
Martin Obst35853803
Robert N. Lamb351715201
William Thomlinson35933750
Ronny Sutarto321054685
Network Information
Related Institutions (5)
Argonne National Laboratory
64.3K papers, 2.4M citations

87% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

86% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

86% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

84% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202223
2021139
2020137
2019129
2018107
2017117