scispace - formally typeset
Search or ask a question
Institution

Cancer Research Institute

NonprofitNew York, New York, United States
About: Cancer Research Institute is a nonprofit organization based out in New York, New York, United States. It is known for research contribution in the topics: Cancer & Population. The organization has 1061 authors who have published 754 publications receiving 26712 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Flow cytometry appears to be the methodology of choice to study various aspects of necrobiology and it is expected that flow cytometry will be the dominant methodology for necro biology.
Abstract: The term cell necrobiology is introduced to comprise the life processes associated with morphological, biochemical, and molecular changes which predispose, precede, and accompany cell death, as well as the consequences and tissue response to cell death. Two alternative modes of cell death can be distinguished, apoptosis and accidental cell death, generally defined as necrosis. The wide interest in necrobiology in many disciplines stems from the realization that apoptosis, whether it occurs physiologically or as a manifestation of a pathological state, is an active mode of cell death and a subject of complex regulatory processes. A possibility exists, therefore, to interact with the regulatory machinery and thereby modulate the cell's propensity to die in response to intrinsic or exogenous signals. Flow cytometry appears to be the methodology of choice to study various aspects of necrobiology. It offers all the advantages of rapid, multiparameter analysis of large populations of individual cells to investigate the biological processes associated with cell death. Numerous methods have been developed to identify apoptotic and necrotic cells and are widely used in various disciplines, in particular in oncology and immunology. The methods based on changes in cell morphology, plasma membrane structure and transport function, function of cell organelles, DNA stability to denaturation, and endonucleolytic DNA degradation are reviewed and their applicability in the research laboratory and in the clinical setting is discussed. Improper use of flow cytometry in analysis of cell death and in data interpretation also is discussed. The most severe errors are due to i) misclassification of nuclear fragments and individual apoptotic bodies as single apoptotic cells, ii) assumption that the apoptotic index represents the rate of cell death, and iii) failure to confirm by microscopy that the cells classified by flow cytometry as apoptotic or necrotic do indeed show morphology consistent with this classification. It is expected that flow cytometry will be the dominant methodology for necrobiology. Cytometry 27:1–20, 1997. © 1997 Wiley-Liss, Inc.

1,146 citations

Journal ArticleDOI
TL;DR: The combination of the 5T allele in one copy of the CFTR gene with a cystic fibrosis mutation in the other copy is the most common cause of CBAVD.
Abstract: Background Congenital bilateral absence of the vas deferens (CBAVD) is a form of male infertility in which mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been identified. The molecular basis of CBAVD is not completely understood. Although patients with cystic fibrosis have mutations in both copies of the CFTR gene, most patients with CBAVD have mutations in only one copy of the gene. Methods To investigate CBAVD at the molecular level, we have characterized the mutations in the CFTR gene in 102 patients with this condition. None had clinical manifestations of cystic fibrosis. We also analyzed a DNA variant (the 5T allele) in a noncoding region of CFTR that causes reduced levels of the normal CFTR protein. Parents of patients with cystic fibrosis, patients with types of infertility other than CBAVD, and normal subjects were studied as controls. Results Nineteen of the 102 patients with CBAVD had mutations in both copies of the CFTR gene, and none of them had the 5T al...

909 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal and plays a pivotal role in maintaining the HSC pool.

767 citations

Journal ArticleDOI
TL;DR: Evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy, into traditional classification of cancer, designated TNM-I (TNM-Immune), and introduction of this parameter as a biomarker to classify cancers will facilitate clinical decision-making.
Abstract: Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).

705 citations

Journal ArticleDOI
TL;DR: A body of clinical and laboratory data was generated that supports three novel endpoint recommendations that may improve tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation.
Abstract: Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluation of some immunotherapy clinical trials require a new development paradigm that includes reconsideration of established endpoints. Between 2004 and 2009, several initiatives facilitated by the Cancer Immunotherapy Consortium of the Cancer Research Institute and partner organizations systematically evaluated an immunotherapy-focused clinical development paradigm and created the principles for redefining trial endpoints. On this basis, a body of clinical and laboratory data was generated that supports three novel endpoint recommendations. First, cellular immune response assays generate highly variable results. Assay harmonization in multicenter trials may minimize variability and help to establish cellular immune response as a reproducible biomarker, thus allowing investigation of its relationship with clinical outcomes. Second, immunotherapy may induce novel patterns of antitumor response not captured by Response Evaluation Criteria in Solid Tumors or World Health Organization criteria. New immune-related response criteria were defined to more comprehensively capture all response patterns. Third, delayed separation of Kaplan-Meier curves in randomized immunotherapy trials can affect results. Altered statistical models describing hazard ratios as a function of time and recognizing differences before and after separation of curves may allow improved planning of phase III trials. These recommendations may improve our tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation.

514 citations


Authors

Showing all 1079 results

NameH-indexPapersCitations
Lewis L. Lanier15955486677
Xavier Estivill11067359568
Richard D. Kolodner10530740928
Jay A. Levy10445137920
Zbigniew Darzynkiewicz10168942625
Vikas P. Sukhatme10031739027
Israel Vlodavsky9849434150
Yung-Jue Bang9466446313
Naofumi Mukaida9336829652
Tetsuo Noda9031833195
George R. Pettit8984831759
Jo Vandesompele8838359368
Denis Gospodarowicz8420828915
Rolf Kiessling8229924617
Bruce R. Bistrian7759025634
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

86% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

84% related

Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

83% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

83% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202223
202144
202034
201941
201829