scispace - formally typeset
Search or ask a question
Institution

Carleton University

EducationOttawa, Ontario, Canada
About: Carleton University is a education organization based out in Ottawa, Ontario, Canada. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 15852 authors who have published 39650 publications receiving 1106610 citations.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2812 moreInstitutions (207)
TL;DR: In this paper, an independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b tagging algorithm used in the online trigger are also presented.
Abstract: The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag rate for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty.

362 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2871 moreInstitutions (167)
TL;DR: In this article, the authors presented the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at center-of-mass energies of root s = 7 and 8 TeV.
Abstract: This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb(-1) of LHC proton-proton collision data taken at centre-of-mass energies of root s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.

361 citations

Journal ArticleDOI
01 Jul 2002-Ecology
TL;DR: The relationship between home range area and dispersal distance in mammals was found to be isometric when the square root of home range areas (i.e., linear dimension of the home range) was used as mentioned in this paper.
Abstract: We tested the prediction that home range area and dispersal distance in mammals are related when considered independently of body size. Regression of log- transformed data demonstrated that more variance in maximum dispersal distance could be explained by home range area (74%) than could be explained by body size (50%). The relationship between maximum dispersal distance and home range size was isometric (slope 5 1) when the square root of home range area (i.e., linear dimension of home range) was used. Thus, maximum dispersal distance was related to home range size by a single constant of 40. A linear relationship remained between these two variables after the effects of body size were removed (F 5 31.6, df 5 1, 32, P 5 3.2 3 10 26 , R 2 5 0.50). A similar isometric relationship with home range size was found for median dispersal distance (related by a multiple of 7). This isometric relationship between dispersal distance and home range size was tested using a second data source: maximum movements made by mammals after translocation, which also was linearly related to home range area (F 5 94.5, df 5 1, 23, P 5 1.3 3 10 29 , R 2 5 0.81). The slope and intercept of this relationship were not different from those of the relationship between maximum dispersal distance and home range area. We suggest that the vagility of mammals affected both home range size and dispersal distance (or movement after translocation) independently of body size, such that these movements could be predicted by home range area better than by body size alone. The resulting isometric relationship between dispersal distance and home range size has potential as a useful scaling rule for ecological practitioners.

361 citations

Journal ArticleDOI
TL;DR: Simulation results demonstrate that the FSO-based vertical backhaul/ fronthaul framework can offer data rates higher than the baseline alternatives, and thus can be considered a promising solution to the emerging back haul/fronthaul requirements of the 5G+ wireless networks, particularly in the presence of ultra-dense heterogeneous small cells.
Abstract: The presence of a super high rate, but also cost-efficient, easy-to-deploy, and scalable, backhaul/ fronthaul framework, is essential in the upcoming 5G wireless networks and beyond. Motivated by the mounting interest in unmanned flying platforms of various types, including UAVs, drones, balloons, and HAPs/MAPs/LAPs, which we refer to as networked flying platforms (NFPs), for providing communications services, and by the recent advances in free space optics (FSO), this article investigates the feasibility of a novel vertical backhaul/fronthaul framework where the NFPs transport the backhaul/fronthaul traffic between the access and core networks via pointto- point FSO links. The performance of the proposed innovative approach is investigated under different weather conditions and a broad range of system parameters. Simulation results demonstrate that the FSO-based vertical backhaul/ fronthaul framework can offer data rates higher than the baseline alternatives, and thus can be considered a promising solution to the emerging backhaul/fronthaul requirements of the 5G+ wireless networks, particularly in the presence of ultra-dense heterogeneous small cells. This article also presents the challenges that accompany such a novel framework and provides some key ideas toward overcoming these challenges.

360 citations

Journal ArticleDOI
TL;DR: The findings indicate a breakthrough in using evolutionary algorithms in solving highly constrained envelope, HVAC and renewable optimization problems and some future directions anticipated or needed for improvement of current tools are presented.

360 citations


Authors

Showing all 16102 results

NameH-indexPapersCitations
George F. Koob171935112521
Zhenwei Yang150956109344
Andrew White1491494113874
J. S. Keller14498198249
R. Kowalewski1431815135517
Manuella Vincter131944122603
Gabriella Pasztor129140186271
Beate Heinemann129108581947
Claire Shepherd-Themistocleous129121186741
Monica Dunford12990677571
Dave Charlton128106581042
Ryszard Stroynowski128132086236
Peter Krieger128117181368
Thomas Koffas12894276832
Aranzazu Ruiz-Martinez12678371913
Network Information
Related Institutions (5)
University of British Columbia
209.6K papers, 9.2M citations

93% related

McGill University
162.5K papers, 6.9M citations

93% related

University of Alberta
154.8K papers, 5.3M citations

92% related

Arizona State University
109.6K papers, 4.4M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202389
2022381
20212,299
20202,243
20192,017
20181,841