scispace - formally typeset
Search or ask a question
Institution

Carnegie Learning

About: Carnegie Learning is a based out in . It is known for research contribution in the topics: Galaxy & Redshift. The organization has 1682 authors who have published 3409 publications receiving 173014 citations.
Topics: Galaxy, Redshift, Star formation, Population, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a sample of star-forming galaxies at 2 ≲z ≲ 4.5 was constructed from the Hubble Deep Field (HDF) images, which is 3 times higher than the local value but still 4 times lower than the rate observed at z ≈ 1.75.
Abstract: The Lyman decrement associated with the cumulative effect of H I in QSO absorption systems along the line of sight provides a distinctive feature for identifying galaxies at z ≳ 2.5. Colour criteria, which are sensitive to the presence of a Lyman continuum break superposed on an otherwise flat UV spectrum, have been shown, through Keck spectroscopy, to successfully identify a substantial population of star-forming galaxies at 3 ≲ z ≲ 3.5. Such objects have proven to be surprisingly elusive in field galaxy redshift surveys; quantification of their surface densities and morphologies is crucial for determining how and when galaxies formed. The Hubble Deep Field (HDF) observations offer the opportunity to exploit the ubiquitous effect of intergalactic absorption and obtain useful statistical constraints on the redshift distribution of galaxies to considerably fainter limits than the current spectroscopic limits. We model the H I cosmic opacity as a function of redshift, including scattering in resonant lines of the Lyman series and Lyman continuum absorption, and use stellar population synthesis models with a wide variety of ages, metallicities, dust contents and redshifts to derive colour selection criteria that provide a robust separation between high-redshift and low-redshift galaxies. From the HDF images we construct a sample of star-forming galaxies at 2 ≲z ≲ 4.5. While none of the ∼ 60 objects in the HDF having known Keck/Low-Resolution Imaging Spectrograph (LRIS) spectroscopic redshifts in the range 0 ≲ z ≲1.4 is found to contaminate our high-redshift sample, our colour criteria are able to efficiently select the 2.6 ≲ z ≲ 3.2 galaxies identified by Steidel et al. The ultraviolet (and blue) dropout technique opens up the possibility of investigating cosmic star and element formation in the early Universe. We set a lower limit to the ejection rate of heavy elements per unit comoving volume from Type II supernovae at 〈z〉 = 2.75 of ≈ 3.6 × 10^(−4) M_⊙ yr^(−1) Mpc^(−3) (for q_0 = 0.5 and H_0 = 50 km s^(−1) Mpc^(−1)), which is 3 times higher than the local value but still 4 times lower than the rate observed at z ≈ 1. At 〈z〉 = 4, our lower limit to the cosmic metal ejection rate is ≈ 3 times lower than the 〈z〉 = 2.75 value. We discuss the implications of these results on models of galaxy formation, and on the chemical enrichment and ionization history of the intergalactic medium.

2,149 citations

Journal ArticleDOI
TL;DR: GALFIT as mentioned in this paper is a 2D fitting algorithm to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope.
Abstract: We present a two-dimensional (2-D) fitting algorithm (GALFIT) designed to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope. Our algorithm improves on previous techniques in two areas, by being able to simultaneously fit a galaxy with an arbitrary number of components, and with optimization in computation speed, suited for working on large galaxy images. We use 2-D models such as the ``Nuker'' law, the Sersic (de Vaucouleurs) profile, an exponential disk, and Gaussian or Moffat functions. The azimuthal shapes are generalized ellipses that can fit disky and boxy components. Many galaxies with complex isophotes, ellipticity changes, and position-angle twists can be modeled accurately in 2-D. When examined in detail, we find that even simple-looking galaxies generally require at least three components to be modeled accurately, rather than the one or two components more often employed. We illustrate this by way of 7 case studies, which include regular and barred spiral galaxies, highly disky lenticular galaxies, and elliptical galaxies displaying various levels of complexities. A useful extension of this algorithm is to accurately extract nuclear point sources in galaxies. We compare 2-D and 1-D extraction techniques on simulated images of galaxies having nuclear slopes with different degrees of cuspiness, and we then illustrate the application of the program to several examples of nearby galaxies with weak nuclei.

1,726 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux.
Abstract: After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained bymore » a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less

1,473 citations

Journal ArticleDOI
TL;DR: In this article, the authors report data for I-band surface brightness fluctuation (SBF) magnitudes, (V-I) colors, and distance moduli for 300 galaxies.
Abstract: We report data for I-band surface brightness fluctuation (SBF) magnitudes, (V-I) colors, and distance moduli for 300 galaxies. The survey contains E, S0, and early-type spiral galaxies in the proportions of 49 : 42 : 9 and is essentially complete for E galaxies to Hubble velocities of 2000 km s-1, with a substantial sampling of E galaxies out to 4000 km s-1. The median error in distance modulus is 0.22 mag. We also present two new results from the survey. (1) We compare the mean peculiar flow velocity (bulk flow) implied by our distances with predictions of typical cold dark matter transfer functions as a function of scale, and we find very good agreement with cold, dark matter cosmologies if the transfer function scale parameter Γ and the power spectrum normalization σ8 are related by σ8Γ-0.5 ≈ 2 ± 0.5. Derived directly from velocities, this result is independent of the distribution of galaxies or models for biasing. This modest bulk flow contradicts reports of large-scale, large-amplitude flows in the ~200 Mpc diameter volume surrounding our survey volume. (2) We present a distance-independent measure of absolute galaxy luminosity, and show how it correlates with galaxy properties such as color and velocity dispersion, demonstrating its utility for measuring galaxy distances through large and unknown extinction.

1,394 citations

Journal ArticleDOI
TL;DR: The High-Z Supernova Search (HSSS) as mentioned in this paper is an international collaboration to discover and monitor Type Ia supernovae (SNe Ia) at z > 0.2 with the aim of measuring cosmic deceleration and global curvature.
Abstract: The High-Z Supernova Search is an international collaboration to discover and monitor Type Ia supernovae (SNe Ia) at z > 0.2 with the aim of measuring cosmic deceleration and global curvature. Our collaboration has pursued a basic understanding of supernovae in the nearby universe, discovering and observing a large sample of objects and developing methods to measure accurate distances with SNe Ia. This paper describes the extension of this program to z ≥ 0.2, outlining our search techniques and follow-up program. We have devised high-throughput filters that provide accurate two-color rest frame B and V light curves of SNe Ia, enabling us to produce precise, extinction-corrected luminosity distances in the range 0.25 M=-0.2 -->−0.8+1.0 if ΩΛ = 0. For a spatially flat universe composed of normal matter and a cosmological constant, we find Ω -->M=0.4 -->−0.4+0.5, Ω${Λ}$ -->=0.6 -->−0.5+0.4. We demonstrate that with a sample of ~30 objects, we should be able to determine relative luminosity distances over the range 0 < z < 0.5 with sufficient precision to measure ΩM with an uncertainty of ±0.2.

1,280 citations


Authors

Showing all 1682 results

NameH-indexPapersCitations
Ian Smail15189583777
Luis C. Ho136106482352
Mauro Giavalisco12841269967
Ashok Agarwal125114756052
Gregory P. Asner12361360547
Edo Berger11857847147
Barry F. Madore11845255260
Ho-kwang Mao11484452482
Paolo A. Mazzali11252041492
Matthias Steinmetz11246167802
Ignacio E. Grossmann11277646185
Ruslan Salakhutdinov107410115921
Wolf B. Frommer10534530918
Jason X. Prochaska10347840382
Mark Seibert10235645560
Network Information
Related Institutions (5)
European Southern Observatory
16.1K papers, 823K citations

85% related

INAF
30.8K papers, 1.2M citations

85% related

Space Telescope Science Institute
14.1K papers, 947.2K citations

85% related

University of California, Santa Cruz
44.1K papers, 2.7M citations

83% related

California Institute of Technology
146.6K papers, 8.6M citations

82% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2021100
2020122
2019132
2018140
2017157
2016180