scispace - formally typeset
Search or ask a question
Institution

Carnegie Mellon University

EducationPittsburgh, Pennsylvania, United States
About: Carnegie Mellon University is a education organization based out in Pittsburgh, Pennsylvania, United States. It is known for research contribution in the topics: Population & Robot. The organization has 36317 authors who have published 104359 publications receiving 5975734 citations. The organization is also known as: CMU & Carnegie Mellon.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors ask whether or not a supervised machine learning model will work in deployment, and what else can it tell you about the world, besides its predictive capabilities.
Abstract: Supervised machine-learning models boast remarkable predictive capabilities. But can you trust your model? Will it work in deployment? What else can it tell you about the world?

1,197 citations

Book ChapterDOI
20 Sep 2004
TL;DR: In this paper, the Enron corpus is used as a new test bed for email folder prediction, and the baseline results of a state-of-the-art classifier (Support Vector Machines) under various conditions.
Abstract: Automated classification of email messages into user-specific folders and information extraction from chronologically ordered email streams have become interesting areas in text learning research. However, the lack of large benchmark collections has been an obstacle for studying the problems and evaluating the solutions. In this paper, we introduce the Enron corpus as a new test bed. We analyze its suitability with respect to email folder prediction, and provide the baseline results of a state-of-the-art classifier (Support Vector Machines) under various conditions, including the cases of using individual sections (From, To, Subject and body) alone as the input to the classifier, and using all the sections in combination with regression weights.

1,194 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical model for communicating sequential processes is given, and a number of its interesting and useful properties are stated and proved, and the possibilities of nondetermimsm are fully taken into account.
Abstract: A mathematical model for communicating sequential processes is given, and a number of its interesting and useful properties are stated and proved. The possibilities of nondetermimsm are fully taken into account.

1,193 citations

Proceedings ArticleDOI
24 Aug 2008
TL;DR: This model generalizes several existing matrix factorization methods, and therefore yields new large-scale optimization algorithms for these problems, which can handle any pairwise relational schema and a wide variety of error models.
Abstract: Relational learning is concerned with predicting unknown values of a relation, given a database of entities and observed relations among entities. An example of relational learning is movie rating prediction, where entities could include users, movies, genres, and actors. Relations encode users' ratings of movies, movies' genres, and actors' roles in movies. A common prediction technique given one pairwise relation, for example a #users x #movies ratings matrix, is low-rank matrix factorization. In domains with multiple relations, represented as multiple matrices, we may improve predictive accuracy by exploiting information from one relation while predicting another. To this end, we propose a collective matrix factorization model: we simultaneously factor several matrices, sharing parameters among factors when an entity participates in multiple relations. Each relation can have a different value type and error distribution; so, we allow nonlinear relationships between the parameters and outputs, using Bregman divergences to measure error. We extend standard alternating projection algorithms to our model, and derive an efficient Newton update for the projection. Furthermore, we propose stochastic optimization methods to deal with large, sparse matrices. Our model generalizes several existing matrix factorization methods, and therefore yields new large-scale optimization algorithms for these problems. Our model can handle any pairwise relational schema and a wide variety of error models. We demonstrate its efficiency, as well as the benefit of sharing parameters among relations.

1,192 citations

Journal ArticleDOI
TL;DR: Atom transfer radical polymerization (ATRP) is one of the most successful methods to polymerize styrenes, (meth)acrylates and a variety of other monomers in a controlled fashion, yielding polymers with molecular weights predetermined by the ratio of the concentrations of consumed monomer to introduced initiator and with low polydispersities as discussed by the authors.

1,189 citations


Authors

Showing all 36645 results

NameH-indexPapersCitations
Yi Chen2174342293080
Rakesh K. Jain2001467177727
Robert C. Nichol187851162994
Michael I. Jordan1761016216204
Jasvinder A. Singh1762382223370
J. N. Butler1722525175561
P. Chang1702154151783
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Geoffrey E. Hinton157414409047
Herbert A. Simon157745194597
Yongsun Kim1562588145619
Terrence J. Sejnowski155845117382
John B. Goodenough1511064113741
Scott Shenker150454118017
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

IBM
253.9K papers, 7.4M citations

93% related

Princeton University
146.7K papers, 9.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023120
2022499
20214,980
20205,375
20195,420
20184,972