scispace - formally typeset
Search or ask a question
Institution

Carnegie Mellon University

EducationPittsburgh, Pennsylvania, United States
About: Carnegie Mellon University is a education organization based out in Pittsburgh, Pennsylvania, United States. It is known for research contribution in the topics: Population & Robot. The organization has 36317 authors who have published 104359 publications receiving 5975734 citations. The organization is also known as: CMU & Carnegie Mellon.


Papers
More filters
Proceedings ArticleDOI
14 Jun 2004
TL;DR: It is proved that two general versions of optimal k-anonymization of relations are NP-hard, including the suppression version which amounts to choosing a minimum number of entries to delete from the relation.
Abstract: The technique of k-anonymization has been proposed in the literature as an alternative way to release public information, while ensuring both data privacy and data integrity. We prove that two general versions of optimal k-anonymization of relations are NP-hard, including the suppression version which amounts to choosing a minimum number of entries to delete from the relation. We also present a polynomial time algorithm for optimal k-anonymity that achieves an approximation ratio independent of the size of the database, when k is constant. In particular, it is a O(k log k)-approximation where the constant in the big-O is no more than 4, However, the runtime of the algorithm is exponential in k. A slightly more clever algorithm removes this condition, but is a O(k log m)-approximation, where m is the degree of the relation. We believe this algorithm could potentially be quite fast in practice.

853 citations

Journal ArticleDOI
27 Jun 2005
TL;DR: SPIRAL generates high-performance code for a broad set of DSP transforms, including the discrete Fourier transform, other trigonometric transforms, filter transforms, and discrete wavelet transforms.
Abstract: Fast changing, increasingly complex, and diverse computing platforms pose central problems in scientific computing: How to achieve, with reasonable effort, portable optimal performance? We present SPIRAL, which considers this problem for the performance-critical domain of linear digital signal processing (DSP) transforms. For a specified transform, SPIRAL automatically generates high-performance code that is tuned to the given platform. SPIRAL formulates the tuning as an optimization problem and exploits the domain-specific mathematical structure of transform algorithms to implement a feedback-driven optimizer. Similar to a human expert, for a specified transform, SPIRAL "intelligently" generates and explores algorithmic and implementation choices to find the best match to the computer's microarchitecture. The "intelligence" is provided by search and learning techniques that exploit the structure of the algorithm and implementation space to guide the exploration and optimization. SPIRAL generates high-performance code for a broad set of DSP transforms, including the discrete Fourier transform, other trigonometric transforms, filter transforms, and discrete wavelet transforms. Experimental results show that the code generated by SPIRAL competes with, and sometimes outperforms, the best available human tuned transform library code.

853 citations

Proceedings ArticleDOI
05 Oct 2001
TL;DR: This paper proposes and evaluates two different approaches to updating a query language model based on feedback documents, one based on a generative probabilistic model of feedback documents and onebased on minimization of the KL-divergence over feedback documents.
Abstract: The language modeling approach to retrieval has been shown to perform well empirically. One advantage of this new approach is its statistical foundations. However, feedback, as one important component in a retrieval system, has only been dealt with heuristically in this new retrieval approach: the original query is usually literally expanded by adding additional terms to it. Such expansion-based feedback creates an inconsistent interpretation of the original and the expanded query. In this paper, we present a more principled approach to feedback in the language modeling approach. Specifically, we treat feedback as updating the query language model based on the extra evidence carried by the feedback documents. Such a model-based feedback strategy easily fits into an extension of the language modeling approach. We propose and evaluate two different approaches to updating a query language model based on feedback documents, one based on a generative probabilistic model of feedback documents and one based on minimization of the KL-divergence over feedback documents. Experiment results show that both approaches are effective and outperform the Rocchio feedback approach.

852 citations

Journal ArticleDOI
TL;DR: The homogeneous atom transfer radical polymerization (ATRP) of styrene using solubilizing 4,4'dialkyl substituted 2,2'bipyridines yielded well-defined polymers with Mw/Mn ≤ 1.10 as mentioned in this paper.
Abstract: The homogeneous atom transfer radical polymerization (ATRP) of styrene using solubilizing 4,4‘-dialkyl substituted 2,2‘-bipyridines yielded well-defined polymers with Mw/Mn ≤ 1.10. The polymerizations exhibited an increase in molecular weight in direct proportion to the ratio of the monomer consumed to the initial initiator concentration and also exhibited internal first-order kinetics with respect to monomer concentration. The optimum ratio of ligand-to-copper(I) halide for these polymerizations was found to be 2:1, which tentatively indicates that the coordination sphere of the active copper(I) center contains two bipyridine ligands. The exclusive role for this copper(I) complex in ATRP is atom transfer, since at typical concentrations that occur for these polymerizations (≈10-7−10-8 M), polymeric radicals were found not to react with the copper(I) center in any manner that enhanced or detracted from the observed control. ATRP also exhibited first-order kinetics with respect to both initiator and copper...

852 citations

Proceedings ArticleDOI
17 Aug 2015
TL;DR: A principled control-theoretic model is developed that can optimally combine throughput and buffer occupancy information to outperform traditional approaches in bitrate adaptation in client-side players and is presented as a novel model predictive control algorithm.
Abstract: User-perceived quality-of-experience (QoE) is critical in Internet video applications as it impacts revenues for content providers and delivery systems. Given that there is little support in the network for optimizing such measures, bottlenecks could occur anywhere in the delivery system. Consequently, a robust bitrate adaptation algorithm in client-side players is critical to ensure good user experience. Previous studies have shown key limitations of state-of-art commercial solutions and proposed a range of heuristic fixes. Despite the emergence of several proposals, there is still a distinct lack of consensus on: (1) How best to design this client-side bitrate adaptation logic (e.g., use rate estimates vs. buffer occupancy); (2) How well specific classes of approaches will perform under diverse operating regimes (e.g., high throughput variability); or (3) How do they actually balance different QoE objectives (e.g., startup delay vs. rebuffering). To this end, this paper makes three key technical contributions. First, to bring some rigor to this space, we develop a principled control-theoretic model to reason about a broad spectrum of strategies. Second, we propose a novel model predictive control algorithm that can optimally combine throughput and buffer occupancy information to outperform traditional approaches. Third, we present a practical implementation in a reference video player to validate our approach using realistic trace-driven emulations.

851 citations


Authors

Showing all 36645 results

NameH-indexPapersCitations
Yi Chen2174342293080
Rakesh K. Jain2001467177727
Robert C. Nichol187851162994
Michael I. Jordan1761016216204
Jasvinder A. Singh1762382223370
J. N. Butler1722525175561
P. Chang1702154151783
Krzysztof Matyjaszewski1691431128585
Yang Yang1642704144071
Geoffrey E. Hinton157414409047
Herbert A. Simon157745194597
Yongsun Kim1562588145619
Terrence J. Sejnowski155845117382
John B. Goodenough1511064113741
Scott Shenker150454118017
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

University of Maryland, College Park
155.9K papers, 7.2M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

IBM
253.9K papers, 7.4M citations

93% related

Princeton University
146.7K papers, 9.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023120
2022499
20214,980
20205,375
20195,420
20184,972