scispace - formally typeset
Search or ask a question
Institution

Case Western Reserve University

EducationCleveland, Ohio, United States
About: Case Western Reserve University is a education organization based out in Cleveland, Ohio, United States. It is known for research contribution in the topics: Population & Health care. The organization has 54617 authors who have published 106568 publications receiving 5071613 citations. The organization is also known as: Case & Case Western.


Papers
More filters
Journal ArticleDOI
TL;DR: Clinical CBD phenotypes and features were combined to create 2 sets of criteria: more specific clinical research criteria for probable CBD and broader criteria for possible CBD that are more inclusive but have a higher chance to detect other tau-based pathologies.
Abstract: Current criteria for the clinical diagnosis of pathologically confirmed corticobasal degeneration (CBD) no longer reflect the expanding understanding of this disease and its clinicopathologic correlations. An international consortium of behavioral neurology, neuropsychology, and movement disorders specialists developed new criteria based on consensus and a systematic literature review. Clinical diagnoses (early or late) were identified for 267 nonoverlapping pathologically confirmed CBD cases from published reports and brain banks. Combined with consensus, 4 CBD phenotypes emerged: corticobasal syndrome (CBS), frontal behavioral-spatial syndrome (FBS), nonfluent/agrammatic variant of primary progressive aphasia (naPPA), and progressive supranuclear palsy syndrome (PSPS). Clinical features of CBD cases were extracted from descriptions of 209 brain bank and published patients, providing a comprehensive description of CBD and correcting common misconceptions. Clinical CBD phenotypes and features were combined to create 2 sets of criteria: more specific clinical research criteria for probable CBD and broader criteria for possible CBD that are more inclusive but have a higher chance to detect other tau-based pathologies. Probable CBD criteria require insidious onset and gradual progression for at least 1 year, age at onset ≥50 years, no similar family history or known tau mutations, and a clinical phenotype of probable CBS or either FBS or naPPA with at least 1 CBS feature. The possible CBD category uses similar criteria but has no restrictions on age or family history, allows tau mutations, permits less rigorous phenotype fulfillment, and includes a PSPS phenotype. Future validation and refinement of the proposed criteria are needed.

1,253 citations

Journal ArticleDOI
14 Mar 2013-Nature
TL;DR: An approach to data acquisition, post-processing and visualization that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue is introduced—which is termed ‘magnetic resonance fingerprinting’ (MRF).
Abstract: Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization—which we term ‘magnetic resonance fingerprinting’ (MRF)—that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy. A new approach to magnetic resonance, ‘magnetic resonance fingerprinting', is reported, which combines a data acquisition scheme with a pattern-recognition algorithm that looks for the ‘fingerprints’ of interest within the data. Although nuclear magnetic resonance is a powerful analytical tool for many scientific and medical disciplines, usually only a fraction of its potential power is harnessed. Most implementations are qualitative, and restricted in the range of properties that are probed. Dan Ma and colleagues introduce a new approach — termed magnetic resonance fingerprinting — aimed at greatly enhancing the amount of quantitative information that can be obtained in one measurement. Their approach combines a data-acquisition scheme that is indiscriminate in the material properties that it probes with pattern-recognition algorithms that look for the 'fingerprints' of interest within the data. Magnetic resonance fingerprinting has the potential to detect and analyse early indicators of disease or complex changes in materials, as well as increasing the sensitivity, specificity and speed of magnetic resonance studies.

1,253 citations

Journal ArticleDOI
TL;DR: A general method of constructing error correcting binary group codes is obtained and an example is worked out to illustrate the method of construction.
Abstract: A general method of constructing error correcting binary group codes is obtained. A binary group code with n places, k of which are information places is called an (n,k) code. An explicit method of constructing t-error correcting (n,k) codes is given for n = 2m−1 and k = 2m−1−R(m,t) ≧ 2m−1−mt where R(m,t) is a function of m and t which cannot exceed mt. An example is worked out to illustrate the method of construction.

1,246 citations

Journal ArticleDOI
TL;DR: A paradigm in which lncRNAs regulate transcription via chromatin modulation is supported, but new functions are steadily emerging, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.
Abstract: The increased application of transcriptome-wide profiling approaches has led to an explosion in the number of documented long non-coding RNAs (lncRNAs). While these new and enigmatic players in the complex transcriptional milieu are encoded by a significant proportion of the genome, their functions are mostly unknown. Early discoveries support a paradigm in which lncRNAs regulate transcription via chromatin modulation, but new functions are steadily emerging. Given the biochemical versatility of RNA, lncRNAs may be used for various tasks, including post-transcriptional regulation, organization of protein complexes, cell-cell signalling and allosteric regulation of proteins.

1,233 citations

Journal ArticleDOI
TL;DR: In this paper, the authors argue that the typical start-up is not innovative, creates few jobs, and generates little wealth, and that by eliminating incentives to create these low probability companies, policy makers can improve the average performance of new businesses.
Abstract: Policy makers often think that creating more start-up companies will transform depressed economic regions, generate innovation, and create jobs. This belief is flawed because the typical start-up is not innovative, creates few jobs, and generates little wealth. Getting economic growth and jobs creation from entrepreneurs is not a numbers game. It is about encouraging the formation of high quality, high growth companies. Policy makers should stop subsidizing the formation of the typical start-up and focus on the subset of businesses with growth potential. While government officials will not be able to “pick winners,” they can identify start-ups with a low probability of generating jobs and enhancing economic growth. By eliminating incentives to create these low probability companies, policy makers can improve the average performance of new businesses.

1,233 citations


Authors

Showing all 54953 results

NameH-indexPapersCitations
Robert Langer2812324326306
Bert Vogelstein247757332094
Zhong Lin Wang2452529259003
John Q. Trojanowski2261467213948
Kenneth W. Kinzler215640243944
Peter Libby211932182724
David Baltimore203876162955
Carlo M. Croce1981135189007
Ronald Klein1941305149140
Eric J. Topol1931373151025
Paul M. Thompson1832271146736
Yusuke Nakamura1792076160313
Dennis J. Selkoe177607145825
David L. Kaplan1771944146082
Evan E. Eichler170567150409
Network Information
Related Institutions (5)
University of Pennsylvania
257.6K papers, 14.1M citations

97% related

Johns Hopkins University
249.2K papers, 14M citations

97% related

Yale University
220.6K papers, 12.8M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

Harvard University
530.3K papers, 38.1M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023142
2022411
20214,337
20204,141
20193,978
20183,663