Institution
Catalan Institution for Research and Advanced Studies
Nonprofit•Barcelona, Spain•
About: Catalan Institution for Research and Advanced Studies is a nonprofit organization based out in Barcelona, Spain. It is known for research contribution in the topics: Population & Graphene. The organization has 1225 authors who have published 10047 publications receiving 562747 citations. The organization is also known as: ICREA.
Papers published on a yearly basis
Papers
More filters
University of Helsinki1, Semmelweis University2, University of Szeged3, Hungarian Academy of Sciences4, University of Palermo5, Institute of Molecular Pathology and Immunology of the University of Porto6, University of Porto7, Autonomous University of Barcelona8, Instituto de Biologia Molecular e Celular9, Ikerbasque10, Harvard University11, University of Duisburg-Essen12, Paracelsus Private Medical University of Salzburg13, Salk Institute for Biological Studies14, University of Colorado Denver15, Bilkent University16, Middle East Technical University17, University of Southern Denmark18, Statens Serum Institut19, Ghent University Hospital20, Oslo University Hospital21, University of Belgrade22, University of Ljubljana23, University of Mainz24, Finnish Red Cross25, University of Gothenburg26, Latvian Biomedical Research and Study centre27, University of Applied Sciences and Arts Northwestern Switzerland FHNW28, University of Valencia29, Centro Nacional de Investigaciones Cardiovasculares30, University of Freiburg31, Utrecht University32, Trinity College, Dublin33, University of Barcelona34, Catalan Institution for Research and Advanced Studies35, International University Of Catalonia36, Aarhus University Hospital37
TL;DR: A comprehensive overview of the current understanding of the physiological roles of EVs is provided, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia.
Abstract: In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
3,690 citations
TL;DR: The Large Area Telescope (Fermi/LAT) as mentioned in this paper is the primary instrument on the Fermi Gamma-ray Space Telescope, which is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV.
Abstract: (Abridged) The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. This paper describes the LAT, its pre-flight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4x4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 x,y tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an 8 layer hodoscopic configuration with a total depth of 8.6 radiation lengths. The aspect ratio of the tracker (height/width) is 0.4 allowing a large field-of-view (2.4 sr). Data obtained with the LAT are intended to (i) permit rapid notification of high-energy gamma-ray bursts (GRBs) and transients and facilitate monitoring of variable sources, (ii) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (iii) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (iv) localize point sources to 0.3 - 2 arc minutes, (v) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (vi) measure the diffuse isotropic gamma-ray background up to TeV energies, and (vii) explore the discovery space for dark matter.
3,666 citations
TL;DR: In this article, the structure and cosmological properties of a number of modified theories, including traditional F (R ) and Hořava-Lifshitz F ( R ) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, nonminimally coupled models, and power-counting renormalizable covariant gravity are discussed.
Abstract: The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F ( R ) and Hořava–Lifshitz F ( R ) gravity, scalar-tensor theory, string-inspired and Gauss–Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann–Robertson–Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F ( R ) gravities, for latter F ( R ) theory, the effective Λ CDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.
3,513 citations
TL;DR: In this paper, a review of modified gravities considered as a gravitational alternative for dark energy is presented, and the possibility to explain the coincidence problem as the manifestation of the universe expansion in such models is mentioned.
Abstract: We review various modified gravities considered as gravitational alternative for dark energy. Specifically, we consider the versions of f(R), f(G) or f(R, G) gravity, model with non-linear gravitational coupling or string-inspired model with Gauss-Bonnet-dilaton coupling in the late universe where they lead to cosmic speed-up. It is shown that some of such theories may pass the Solar System tests. On the same time, it is demonstrated that they have quite rich cosmological structure: they may naturally describe the effective (cosmological constant, quintessence or phantom) late-time era with a possible transition from decceleration to acceleration thanks to gravitational terms which increase with scalar curvature decrease. The possibility to explain the coincidence problem as the manifestation of the universe expansion in such models is mentioned. The late (phantom or quintessence) universe filled with dark fluid with inhomogeneous equation of state (where inhomogeneous terms are originated from the modifi...
2,590 citations
University of Cambridge1, Istituto Italiano di Tecnologia2, Lancaster University3, University of Manchester4, Catalan Institution for Research and Advanced Studies5, Technical University of Denmark6, Nokia7, University of Trento8, fondazione bruno kessler9, Queen Mary University of London10, Technische Universität München11, Polytechnic University of Milan12, Centre national de la recherche scientifique13, University of Trieste14, University of Ioannina15, University of Geneva16, Trinity College, Dublin17, Texas Instruments18, University of Paris19, Spanish National Research Council20, Leiden University21, Delft University of Technology22, University of Patras23, École Normale Supérieure24, Radboud University Nijmegen25, Nest Labs26, Airbus UK27, Seoul National University28, Yonsei University29, University of Oxford30, Chalmers University of Technology31, University of Groningen32, STMicroelectronics33, Chemnitz University of Technology34, Max Planck Society35, Aalto University36
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
2,560 citations
Authors
Showing all 1286 results
Name | H-index | Papers | Citations |
---|---|---|---|
David D'Enterria | 150 | 1592 | 116210 |
Manel Esteller | 146 | 713 | 96429 |
Diego F. Torres | 137 | 948 | 72180 |
Damià Barceló | 135 | 1379 | 83714 |
Elias Campo | 135 | 761 | 85160 |
M. I. Martínez | 134 | 1251 | 79885 |
Michele Parrinello | 133 | 637 | 94674 |
Sebastian Grinstein | 128 | 1222 | 79158 |
Antoni Torres | 120 | 1238 | 65049 |
Josep M. Llovet | 116 | 399 | 83871 |
Tadayuki Takahashi | 112 | 932 | 57501 |
Jie Wu | 112 | 1537 | 56708 |
Sergei D. Odintsov | 112 | 609 | 62524 |
Günther Deuschl | 109 | 706 | 46371 |
Josep Dalmau | 108 | 568 | 49331 |