scispace - formally typeset
Search or ask a question
Institution

Central Drug Research Institute

FacilityLucknow, Uttar Pradesh, India
About: Central Drug Research Institute is a facility organization based out in Lucknow, Uttar Pradesh, India. It is known for research contribution in the topics: Leishmania donovani & Brugia malayi. The organization has 4357 authors who have published 7257 publications receiving 143871 citations. The organization is also known as: Central Drug Research Institute, Lucknow & CDRI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside.
Abstract: A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside.

856 citations

Journal ArticleDOI
TL;DR: The data suggests that the micelles of thioflavin T bind amyloid fibrils leading to enhancement of fluorescence emission, which suggests that positive charge on the thioFlavin T molecule has a role in its micelle formation that then bind the amyloids fibril.

770 citations

Journal ArticleDOI
TL;DR: Free heme acts as a pro-inflammatory molecule and heme-induced inflammation is involved in the pathology of diverse conditions; such as renal failure, arteriosclerosis, and complications after artificial blood transfusion, peritoneal endometriosis, and heart transplant failure.

746 citations

Journal Article
TL;DR: The results show that data from published knowledge can be used to provide reliable, patient level, automated risk assessment, potentially reducing the cognitive burden on physicians and helping policy makers better prepare for future needs.
Abstract: Facing the rapidly spreading novel coronavirus disease (COVID-19), evidence to inform decision-making at both the clinical and policy-making level is highly needed. Based on the results of a study by Petrilli et al, we have developed a calculator using patient data at admission to predict the risk of critical illness (intensive care unit admission, use of mechanical ventilation, discharge to hospice, or death). We report a retrospective validation of the risk calculator on 145 consecutive patients admitted with COVID-19 to a single hospital in Israel. Of the 18 patients with critical illness, 17 were correctly identified by the model(sensitivity: 94.4%, 95% CI, 72.7% to 99.9%; specificity: 81.9%, 95% CI, 74.1% to 88.2%). Of the 127 patients with non-critical illness, 104 were correctly identified. This, despite considerable differences between the original and validation study populations. Our results show that data from published knowledge can be used to provide reliable, patient level, automated risk assessment, potentially reducing the cognitive burden on physicians and helping policy makers better prepare for future needs.

712 citations


Authors

Showing all 4385 results

NameH-indexPapersCitations
Sanjay Kumar120205282620
John A. Katzenellenbogen9569136132
Brajesh K. Singh8340124101
Gaurav Sharma82124431482
Sudhir Kumar82524216349
Pramod K. Srivastava7939027330
Mohan K. Raizada7547321452
Syed F. Ali7144618669
Ravi Shankar6667219326
Ramesh Chandra6662016293
Manoj Kumar6540816838
Manish Kumar61142521762
Anil Kumar Saxena5831010107
Sanjay Krishna5662413731
Naibedya Chattopadhyay562429795
Network Information
Related Institutions (5)
Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Bristol-Myers Squibb
21K papers, 932.5K citations

92% related

Novartis
50.5K papers, 1.9M citations

91% related

Pfizer
37.4K papers, 1.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202255
2021306
2020232
2019246
2018289