scispace - formally typeset
Search or ask a question
Institution

Central Drug Research Institute

FacilityLucknow, Uttar Pradesh, India
About: Central Drug Research Institute is a facility organization based out in Lucknow, Uttar Pradesh, India. It is known for research contribution in the topics: Catalysis & Leishmania donovani. The organization has 4357 authors who have published 7257 publications receiving 143871 citations. The organization is also known as: Central Drug Research Institute, Lucknow & CDRI.


Papers
More filters
Journal ArticleDOI
TL;DR: The study suggests that activation of AT1 receptors appears to be involved in the scopolamine-induced amnesia and that AT2 receptors contribute to the beneficial effects of candesartan.
Abstract: Rational Inhibition of renin–angiotensin system (RAS) improves cognitive functions in hypertensive patients. However, role of AT1 and AT2 receptors in memory impairment due to cholinergic hypofunction is unexplored.

63 citations

Journal ArticleDOI
20 Jul 2015-Diabetes
TL;DR: A novel link between elevated hepatic miR-22-3p expression and impaired gluconeogenesis in diabetic db/db mice via the regulation of Tcf7 is unraveled via microRNA-mediated regulation of TCF7, and this microRNAs increases the expression of enzymes of the gluconeogenic pathway in HepG2 cells.
Abstract: Levels of miR-22-3p, a highly abundant hepatic microRNA, are abnormally increased in mouse models of insulin resistance and type 2 diabetes, yet its contribution to deregulated hepatic metabolism under diseased states is not well understood. Here, we unravel a novel link between elevated hepatic miR-22-3p expression and impaired gluconeogenesis in diabetic db/db mice via the regulation of Tcf7 (transcription factor 7). Our data demonstrate that miR-22-3p binds to the 3' untranslated region of TCF7 and downregulates it, and this microRNA-mediated regulation of TCF7 increases the expression of enzymes of the gluconeogenic pathway in HepG2 cells. Small interfering RNA-mediated knockdown of TCF7 in HepG2 cells also causes similar upregulation of gluconeogenic genes. Furthermore, in vivo silencing of miR-22-3p by antagomiR administration lowered random as well as fasting glucose levels in diabetic mice. miR-22-3p antagonism improved glucose tolerance and insulin sensitivity. Importantly, the hepatic Tcf7 levels were restored along with reduced hepatic glucose output, which was also reflected by the decreased expression of gluconeogenic genes. Our results support a critical role for miR-22-3p and its target, Tcf7, in the pathogenesis of diabetes by upregulating gluconeogenesis. Moreover, targeting the miR-22/Tcf7/Wnt axis might hold therapeutic potential for the treatment of altered hepatic physiology during insulin resistance and type 2 diabetes.

63 citations

Journal ArticleDOI
TL;DR: The osteogenic potential of CAFG is shown as an alternative for anabolic therapy for the treatment of osteoporosis by stimulating bone morphogenetic protein 2 (BMP2) and Wnt/β-catenin mechanism and could be positioned as a potential drug, food supplement, for postmenopausal osteopOrosis and fracture repair.
Abstract: Recently, we reported that extract of Dalbergia sissoo made from leaves and pods have antiresorptive and bone-forming effects. The positive skeletal effect attributed because of active molecules present in the extract of Dalbergia sissoo. Caviunin 7-O-[β-D-apiofuranosyl-(1-6)-β-D-glucopyranoside] (CAFG), a novel isoflavonoid show higher percentage present in the extract. Here, we show the osteogenic potential of CAFG as an alternative for anabolic therapy for the treatment of osteoporosis by stimulating bone morphogenetic protein 2 (BMP2) and Wnt/β-catenin mechanism. CAFG supplementation improved trabecular micro-architecture of the long bones, increased biomechanical strength parameters of the vertebra and femur and decreased bone turnover markers better than genistein. Oral administration of CAFG to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased the expression of osteogenic genes in femur and show new bone formation without uterine hyperplasia. CAFG increased mRNA expression of osteoprotegerin in bone and inhibited osteoclast activation by inhibiting the expression of skeletal osteoclastogenic genes. CAFG is also an effective accelerant for chondrogenesis and has stimulatory effect on the repair of cortical bone after drill-hole injury at the tissue, cell and gene level in mouse femur. At cellular levels, CAFG stimulated osteoblast proliferation, survival and differentiation. Signal transduction inhibitors in osteoblast demonstrated involvement of p-38 mitogen-activated protein kinase pathway stimulated by BMP2 to initiate Wnt/β-catenin signaling to reduce phosphorylation of GSK3-β and subsequent nuclear accumulation of β-catenin. Osteogenic effects were abrogated by Dkk1, Wnt-receptor blocker and FH535, inhibitor of TCF-complex by reduction in β-catenin levels. CAFG modulated MSC responsiveness to BMP2, which promoted osteoblast differentiation via Wnt/β-catenin mechanism. CAFG at 1 mg/kg(/)day dose in ovariectomy mice (human dose ∼0.081 mg/kg) led to enhanced bone formation, reduced bone resorption and bone turnover better than well-known phytoestrogen genistein. Owing to CAFG's inherent properties for bone, it could be positioned as a potential drug, food supplement, for postmenopausal osteoporosis and fracture repair.

63 citations

Journal ArticleDOI
TL;DR: In this article, the aporphine alkaloids anonaine, roemerine, norcorydine and glaucine have been isolated from Annona squamosa.

63 citations

Journal ArticleDOI
TL;DR: A detailed photophysical investigation of the TPE-naphthyridine scaffold led to the discovery of its high sensitivity to silver ions (Ag+) over other metal ions with a detection limit of 0.25 μM in an aqueous system.
Abstract: Synthesis of new tetraphenylethene (TPE) conjugates via an innocuous route led to the revelation of a unique TPE-based aggregation-induced emissive fluorogen 3 (TPEN), which showed an interesting mechanochromic property when the emission was changed from blue to green upon grinding and green to blue upon fuming. The mechanochromic property of TPEN has been explored to prepare ink-free rewritable paper for security documentation. A detailed photophysical investigation of the TPE-naphthyridine scaffold led to the discovery of its high sensitivity to silver ions (Ag+) over other metal ions with a detection limit of 0.25 μM in an aqueous system. The stoichiometry of the complex of TPEN and silver ion was established to be 2:1 (TPEN:Ag+) on the basis of photophysical studies, mass analysis, and high-resolution mass spectrometry analysis.

63 citations


Authors

Showing all 4385 results

NameH-indexPapersCitations
Sanjay Kumar120205282620
John A. Katzenellenbogen9569136132
Brajesh K. Singh8340124101
Gaurav Sharma82124431482
Sudhir Kumar82524216349
Pramod K. Srivastava7939027330
Mohan K. Raizada7547321452
Syed F. Ali7144618669
Ravi Shankar6667219326
Ramesh Chandra6662016293
Manoj Kumar6540816838
Manish Kumar61142521762
Anil Kumar Saxena5831010107
Sanjay Krishna5662413731
Naibedya Chattopadhyay562429795
Network Information
Related Institutions (5)
Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Bristol-Myers Squibb
21K papers, 932.5K citations

92% related

Novartis
50.5K papers, 1.9M citations

91% related

Pfizer
37.4K papers, 1.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202256
2021307
2020232
2019246
2018289