scispace - formally typeset
Search or ask a question
Institution

Central Drug Research Institute

FacilityLucknow, Uttar Pradesh, India
About: Central Drug Research Institute is a facility organization based out in Lucknow, Uttar Pradesh, India. It is known for research contribution in the topics: Leishmania donovani & Brugia malayi. The organization has 4357 authors who have published 7257 publications receiving 143871 citations. The organization is also known as: Central Drug Research Institute, Lucknow & CDRI.


Papers
More filters
Journal ArticleDOI
TL;DR: It is concluded that NO itself causes an increase in the permeability of BBB, however arginine-induced opening is not NO mediated, and the possibility of NO generation and its involvement in BBB permeability alteration is ruled out.
Abstract: The role of nitric oxide (NO), a well known vasodilator, in the regulation of blood-brain barrier (BBB) permeability is not clear. Therefore, the present study was planned to assess the role of NO-releasing compounds like sodium nitroprusside (SNP) and the active metabolite of molsidomine, SIN-1, as well as a precursor of NO, L-arginine, on this physiological barrier. The permeability was assessed by using several tracers. All three agents increased the permeability of BBB to the tracer. The increase in permeability caused by L-arginine was not blocked by N-nitro-L-arginine methyl ester (L-NAME). L-Arginine-treated brains did not show an elevation of nitrite content, thus ruling out the possibility of NO generation and its involvement in BBB permeability alteration. It is concluded that NO itself causes an increase in the permeability of BBB. However arginine-induced opening is not NO mediated.

51 citations

Journal ArticleDOI
TL;DR: Results for the first time indicate that the actin dynamics‐regulating protein ADF/cofilin plays a critical role in assembly and motility of the eukaryotic flagellum.
Abstract: ADF/cofilins are ubiquitous actin dynamics-regulating proteins that have been mainly implicated in actin-based cell motility. Trypanosomatids, e.g. Leishmania and Trypanosoma, which mediate their motility through flagellum, also contain a putative ADF/cofilin homologue, but its role in flagellar motility remains largely unexplored. We have investigated the role of this protein in assembly and motility of the Leishmania flagellum after knocking out the ADF/cofilin gene by targeted gene replacement. The resultant mutants were completely immotile, short and stumpy, and had reduced flagellar length and severely impaired beat. In addition, the assembly of the paraflagellar rod was lost, vesicle-like structures were seen throughout the length of the flagellum and the state and distribution of actin were altered. However, episomal complementation of the gene restored normal morphology and flagellar function. These results for the first time indicate that the actin dynamics-regulating protein ADF/cofilin plays a critical role in assembly and motility of the eukaryotic flagellum.

51 citations

Journal ArticleDOI
TL;DR: The present study revealed the presence of bioactive compounds in strain DST103, which may be a promising resource for the discovery of novel bioactive metabolites against wide range of pathogens.
Abstract: The genus Streptomyces under phylum actinobacteria has been recognized as a prolific source for the production of bioactive secondary metabolites. An actinobacterial strain designated as DST103 isolated from a wetland fresh water sediment of Tamdil Lake, Mizoram, Northeast, India was identified as Streptomyces cyaneofuscatus (KY287599) using 16SrRNA gene sequencing which shares 99.87% sequence similarity with Streptomyces cyaneofuscatus NRRL B-2570T. The strain showed broad spectrum antimicrobial activities against Gram negative bacteria (Escherichia coli MTCC 739 and Pseudomonas aeruginosa MTCC 2453), Gram positive bacteria (Micrococcus luteus NCIM 2170 and Staphylococcus aureus MTCC 96) and yeast pathogen Candida albicans MTCC 3017). The methanolic extract of the strain DST103 exhibited highest antimicrobial activity against E. coli (IC50= 2.10 µg/mL) and minimum activity against S. aureus (IC50= 43.63 µg/mL). Five antibiotics [trimethoprim (18μg/g), fluconazole (6μg/g), ketoconazole (18μg/g), nalidixic acid (135μg/g), and rifampicin (56μg/g)] were detected and quantified using ultra-performance liquid chromatography (UPLC-ESI-MS/MS). Further, biosynthetic potential genes [polyketide synthases (PKS) type II, non-ribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE)] were also detected in strain DST103 which may possibly be responsible for the production of antimicrobial compounds. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis showed the presence of four volatile compounds which might be responsible for their diverse biological activity. The present study revealed the presence of bioactive compounds in strain DST103, which may be a promising resource for the discovery of novel bioactive metabolites against wide range of pathogens.

51 citations

Journal ArticleDOI
TL;DR: In this paper, the authors conducted surveillance of SARS-CoV-2 and organic tracers (OTs) in community wastewater of Chennai city and the suburbs, South India, during partial and post lockdown phases (August-September 2020) as a response to the coronavirus disease 2019 (COVID-19) pandemic.

51 citations

Journal ArticleDOI
TL;DR: Activism of salt soluble G1 and detergent soluble G4 molecular isoforms of acetylcholinesterase has been investigated in rat brain areas in trained, scopolamine treated, tacrine treated and anti-dementic treated rats to find out their role in learning and memory functions.
Abstract: In the present study, activity of salt soluble (SS) G1 and detergent soluble (DS) G4 molecular isoforms of acetylcholinesterase (AChE) has been investigated in rat brain areas in trained (learned), scopolamine (amnesic) and Tacrine (anti-dementic) treated rats to find out their role in learning and memory functions. AChE was estimated spectrophotometrically at 412 nm in rat brain areas. Isolation and partial purification of molecular isoforms G1 and G4 of AChE was done by gel filtration chromatography. Passive avoidance was used to test learning and memory functions. AChE activity was altered in both the fractions SS and DS of different brain areas following passive avoidance in control, scopolamine treated, tacrine treated and tacrine treatment in scopolamine pretreated rats. The peak AChE activity obtained in the DS (fraction 9) and the SS (fraction 13) fraction following gel filtration chromatography. On the basis of molecular weight fraction 9 (DS) and 13 (SS) represent the G4 and G1, respectively. The pattern of changes in the AChE activity of G1 isoform (fraction 13 of SS) and G4 isoform (fraction 9 of DS) in brain areas were similar to those of SS and DS fraction, respectively. In hippocampus, AChE activity in the fraction G1 isoform (fraction 13 of SS) was decreased only in tacrine treated rats but AChE activity in the G4 isoform (fraction 9 of DS) was decreased in both trained and tacrine treated rats. Changes in activity of G4 isoform of AChE in hippocampus could be correlated with passive avoidance learning, scopolamine induced deficit in passive avoidance and reversal of scopolamine deficit by tacrine.

51 citations


Authors

Showing all 4385 results

NameH-indexPapersCitations
Sanjay Kumar120205282620
John A. Katzenellenbogen9569136132
Brajesh K. Singh8340124101
Gaurav Sharma82124431482
Sudhir Kumar82524216349
Pramod K. Srivastava7939027330
Mohan K. Raizada7547321452
Syed F. Ali7144618669
Ravi Shankar6667219326
Ramesh Chandra6662016293
Manoj Kumar6540816838
Manish Kumar61142521762
Anil Kumar Saxena5831010107
Sanjay Krishna5662413731
Naibedya Chattopadhyay562429795
Network Information
Related Institutions (5)
Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Bristol-Myers Squibb
21K papers, 932.5K citations

92% related

Novartis
50.5K papers, 1.9M citations

91% related

Pfizer
37.4K papers, 1.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202255
2021306
2020232
2019246
2018289