scispace - formally typeset
Search or ask a question
Institution

Central Drug Research Institute

FacilityLucknow, Uttar Pradesh, India
About: Central Drug Research Institute is a facility organization based out in Lucknow, Uttar Pradesh, India. It is known for research contribution in the topics: Leishmania donovani & Brugia malayi. The organization has 4357 authors who have published 7257 publications receiving 143871 citations. The organization is also known as: Central Drug Research Institute, Lucknow & CDRI.


Papers
More filters
Journal ArticleDOI
TL;DR: The results thus provide first evidence of nNOS and iNOS in the nuclear compartment and suggest NOS interaction with caveolin‐1 in rat PMNs.
Abstract: Nitric oxide (NO) modulates diverse functions of polymorphonuclear neutrophils (PMNs), but localization of NO synthase (NOS) and identification of its interacting proteins remain the least defined. The present study discerns subcellular distribution of NOS and caveolin-1, a prominent NOS-interacting protein in rat PMNs. Localization of NOS was explored by confocal and immunogold electron microscopy, and its activity was assessed by L-[ 3 H] arginine and 4,5-diaminofluorescein diacetate (DAF-2DA). Reverse transcriptase-polymerase chain reaction using NOS primers and Western blotting demonstrated the presence of neuronal NOS (nNOS) and inducible NOS (iNOS) in PMNs. Immunocytochemical studies exhibited distribution of nNOS and iNOS in cytoplasm and nucleus, and L-[ 3 H] citrulline formation and DAF fluorescence confirmed NOS activity in both fractions. NOS activity correlated positively with calmodulin concentration in both of the fractions. nNOS and iNOS colocalized with caveolin-1, as evidenced by immunocytochemical and immuno-precipitation studies. The results thus provide first evidence of nNOS and iNOS in the nuclear compartment and suggest NOS interaction with caveolin-1 in rat PMNs.

74 citations

Journal ArticleDOI
TL;DR: The authors studied the use of ligand anchored dendrimeric formulation of Amphotericin B to target infected macrophages and showed reduced toxicity, high anti-leishmanial activity.

74 citations

Journal ArticleDOI
TL;DR: A review elucidates the regulatory mechanism of PP2A and MAPK kinase and their possible mechanisms involved in OKA-induced apoptosis, neurotoxicity, and AD-like pathology.
Abstract: Okadaic acid (OKA), a polyether C38 fatty acid toxin extracted from a black sponge Hallichondria okadaii, is a potent and selective inhibitor of protein phosphatase, PP1 and PP2A. OKA has been proved to be a powerful probe for studying the various regulatory mechanisms and neurotoxicity. Because of its property to inhibit phosphatase activity, OKA is associated with protein phosphorylation; it is implicated in hyperphosphorylation of tau and in later stages causes Alzhiemer's disease (AD)-like pathology. AD is a progressive neurodegenerative disorder, pathologically characterized by extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). The density of tau tangles in AD pathology is associated with cognitive dysfunction. Recent studies have highlighted the importance of serine/threonine protein phosphatases in many processes including apoptosis and neurotoxicity. Although OKA causes neurotoxicity by various pathways, the exact mechanism is still not clear. The activation of major kinases, such as Ser/Thr, MAPK, ERK, PKA, JNK, PKC, CaMKII, Calpain, and GSK3β, in neurons is associated with AD pathology. These kinases, associated with abnormal hyperphosphorylation of tau, suggest that the cascade of these kinases could exclusively be involved in the pathogenesis of AD. The activity of serine/threonine protein phosphatases needs extensive study as these enzymes are potential targets for novel therapeutics with applications in many diseases including cancer, inflammatory diseases, and neurodegeneration. There is a need to pay ample attention on MAPK kinase pathways in AD, and OKA can be a better tool to study cellular and molecular mechanism for AD pathology. This review elucidates the regulatory mechanism of PP2A and MAPK kinase and their possible mechanisms involved in OKA-induced apoptosis, neurotoxicity, and AD-like pathology.

74 citations

Journal ArticleDOI
TL;DR: It was found that PB-BM was capable of selectively inhibiting both stages of Leishmania parasites by accelerating apoptotic events by generation of reactive oxygen species targeting the mitochondria without any cytotoxicity towards macrophages.
Abstract: In the absence of effective and safe treatment for visceral leishmaniasis or Kala-azar – a devastating parasitic disease caused by Leishmania donovani – the search for anti-leishmanial agents from natural resources in common use is imperative. Recently, the comparative in vitro anti-leishmanial activity of methanolic extracts from two landraces of Piper betle – P. betle landrace Bangla Mahoba (PB-BM) and P. betle landrace Kapoori Vellaikodi (PB-KV) – has been reported. Here, the putative pathway responsible for death induced by the effective extract of PB-BM methanolic extract in promastigotes, as well as the intracellular amastigote form of L. donovani, was assessed using various biochemical approaches. It was found that PB-BM was capable of selectively inhibiting both stages of Leishmania parasites by accelerating apoptotic events by generation of reactive oxygen species targeting the mitochondria without any cytotoxicity towards macrophages. The study was extended to determine the presence or absence of activity of the methanolic extract of PB-BM and PB-KV on the basis of differences in essential oil composition present in the extract assessed by GC and MS. The essential oil from PB-BM was found to be rich in eugenol compared with that from PB-KV. The anti-leishmanial efficacy of PB-BM methanolic extract mediated through apoptosis is probably due to the higher content of eugenol in the active landrace. This observation emphasizes the need to extend studies related to traditional medicines from bioactive plants below the species level to the gender/landrace level for better efficacy and reproducibility.

74 citations

Journal ArticleDOI
TL;DR: Water-soluble piano-stool arene ruthenium complexes based on 1-(4-cyanophenyl)imidazole (CPI) and 4-Cyanopyridine (CNPy) with the formulas [(eta6-arene)RuCl2(L)] have been prepared and the molecular structure of analogous rhodium(III) complex has been determined crystallographically.
Abstract: Water-soluble piano-stool arene ruthenium complexes based on 1-(4-cyanophenyl)imidazole (CPI) and 4-cyanopyridine (CNPy) with the formulas [(η6-arene)RuCl2(L)] (L = CPI, η6-arene = benzene (1), p-cymene (2), hexamethylbenzene (3); L = CNPy, η6-arene = benzene (4), p-cymene (5), hexamethylbenzene (6)) have been prepared by our earlier methods. The molecular structure of [(η6-C6Me6)RuCl2(CNPy)] (6) has been determined crystallographically. Analogous rhodium(III) complex [(η5-C5Me5)RhCl2(CPI)] (7) has also been prepared and characterized. DNA interaction with the arene ruthenium complexes and the rhodium complex has been examined by spectroscopic and gel mobility shift assay; condensation of DNA and B→Z transition have also been described. Arene ruthenium(II) and EPh3 (E = P, As)-containing arene ruthenium(II) complexes exhibited strong binding behavior, however, rhodium(III) complexes were found to be Topo II inhibitors with an inhibition percentage of 70% (7) and 30% (7a). Furthermore, arene ruthenium comp...

74 citations


Authors

Showing all 4385 results

NameH-indexPapersCitations
Sanjay Kumar120205282620
John A. Katzenellenbogen9569136132
Brajesh K. Singh8340124101
Gaurav Sharma82124431482
Sudhir Kumar82524216349
Pramod K. Srivastava7939027330
Mohan K. Raizada7547321452
Syed F. Ali7144618669
Ravi Shankar6667219326
Ramesh Chandra6662016293
Manoj Kumar6540816838
Manish Kumar61142521762
Anil Kumar Saxena5831010107
Sanjay Krishna5662413731
Naibedya Chattopadhyay562429795
Network Information
Related Institutions (5)
Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Bristol-Myers Squibb
21K papers, 932.5K citations

92% related

Novartis
50.5K papers, 1.9M citations

91% related

Pfizer
37.4K papers, 1.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202255
2021306
2020232
2019246
2018289