scispace - formally typeset
Search or ask a question
Institution

Central Drug Research Institute

FacilityLucknow, Uttar Pradesh, India
About: Central Drug Research Institute is a facility organization based out in Lucknow, Uttar Pradesh, India. It is known for research contribution in the topics: Leishmania donovani & Brugia malayi. The organization has 4357 authors who have published 7257 publications receiving 143871 citations. The organization is also known as: Central Drug Research Institute, Lucknow & CDRI.


Papers
More filters
Journal ArticleDOI
TL;DR: Artificial neural network (ANN) and genetic algorithm (GA) were applied to optimize the medium components for the production of actinomycinV from a newly isolated strain of Streptomyces triostinicus which is not reported to produce this class of antibiotics.
Abstract: Artificial neural network (ANN) and genetic algorithm (GA) were applied to optimize the medium components for the production of actinomycinV from a newly isolated strain of Streptomyces triostinicus which is not reported to produce this class of antibiotics. Experiments were conducted using the central composite design (CCD), and the data generated was used to build an artificial neural network model. The concentrations of five medium components (MgSO4, NaCl, glucose, soybean meal and CaCO3) served as inputs to the neural network model, and the antibiotic yield served as outputs of the model. Using the genetic algorithm, the input space of the neural network model was optimized to find out the optimum values for maximum antibiotic yield. Maximum antibiotic yield of 452.0 mg l−1 was obtained at the GA-optimized concentrations of medium components (MgSO4 3.657; NaCl 1.9012; glucose 8.836; soybean meal 20.1976 and CaCO3 13.0842 gl−1). The antibiotic yield obtained by the ANN/GA was 36.7% higher than the yield obtained with the response surface methodology (RSM).

68 citations

Journal ArticleDOI
TL;DR: The induction of differential T-helper cell immune response appears ideal to overcome immunosuppression as observed in case of lymphatic, filarial Brugia malayi infection which may also be extended to other infections as well.

68 citations

Journal ArticleDOI
TL;DR: In the present study the MAb A9 was identified from hybridomas raised in BALB/c mice immunized with cell wall antigen of Aspergillus fumigatus and appeared to be associated with a peptide moiety, and indirect immunofluorescence microscopy revealed its binding to the cell wall surface of hyphae as well as with swollen conidia.
Abstract: Most of the biological functions related to pathogenicity and virulence reside in the fungal cell wall, which, being the outermost part of the cell, mediates the host-fungus interplay. For these reasons much effort has focused on the discovery of useful inhibitors of cell wall glucan, chitin, and mannoprotein biosynthesis. In the absence of a wide-spectrum, safe, and potent antifungal agent, a new strategy for antifungal therapy is directed towards the development of monoclonal antibodies (MAbs). In the present study the MAb A9 (immunoglobulin G1 [IgG1]) was identified from hybridomas raised in BALB/c mice immunized with cell wall antigen of Aspergillus fumigatus. The immunoreactive epitopes for this IgG1 MAb appeared to be associated with a peptide moiety, and indirect immunofluorescence microscopy revealed its binding to the cell wall surface of hyphae as well as with swollen conidia. MAb A9 inhibited hyphal development as observed by MTT [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (25.76%), reduced the duration of spore germination, and exerted an in vitro cidal effect against Aspergillus fumigatus. The in vivo protective efficacy of MAb A9 was also evaluated in a murine model of invasive aspergillosis, where a reduction in CFU (>4 log10 units) was observed in kidney tissue of BALB/c mice challenged with A. fumigatus (2 × 105 CFU/ml) and where enhanced mean survival times (19.5 days) compared to the control (7.1 days) and an irrelevant MAb (6.1 days) were also observed.

68 citations

Journal ArticleDOI
TL;DR: A mild and efficient protocol for Pictet-Spengler reaction in water using an acid catalyst has been described in this article, where the condensation of tryptophan, tryptamine, and N b -benzyl TFA with different aldehydes having both electron-withdrawing and -donating substituents in the presence of a catalytic amount of TFA in water furnished tetrahydro-β-carbolines in good isolated yields.

68 citations

Journal ArticleDOI
TL;DR: 4-aminoquinolines having oxalamide and triazine functionalities in the side chain were synthesized and screened for their antimalarial activities and found to be the most active against CQ sensitive strain 3D7 of Plasmodium falciparum.

68 citations


Authors

Showing all 4385 results

NameH-indexPapersCitations
Sanjay Kumar120205282620
John A. Katzenellenbogen9569136132
Brajesh K. Singh8340124101
Gaurav Sharma82124431482
Sudhir Kumar82524216349
Pramod K. Srivastava7939027330
Mohan K. Raizada7547321452
Syed F. Ali7144618669
Ravi Shankar6667219326
Ramesh Chandra6662016293
Manoj Kumar6540816838
Manish Kumar61142521762
Anil Kumar Saxena5831010107
Sanjay Krishna5662413731
Naibedya Chattopadhyay562429795
Network Information
Related Institutions (5)
Merck & Co.
48K papers, 1.9M citations

93% related

GlaxoSmithKline
21.1K papers, 1.1M citations

92% related

Bristol-Myers Squibb
21K papers, 932.5K citations

92% related

Novartis
50.5K papers, 1.9M citations

91% related

Pfizer
37.4K papers, 1.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202255
2021306
2020232
2019246
2018289