scispace - formally typeset
Search or ask a question
Institution

CentraleSupélec

Facility
About: CentraleSupélec is a based out in . It is known for research contribution in the topics: MIMO & Wireless network. The organization has 1330 authors who have published 2344 publications receiving 30533 citations. The organization is also known as: CentraleSupelec & CentraleSupelec of the Paris-Saclay University.


Papers
More filters
Posted Content
TL;DR: This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF).
Abstract: Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called "semantic image segmentation"). We show that responses at the final layer of DCNNs are not sufficiently localized for accurate object segmentation. This is due to the very invariance properties that make DCNNs good for high level tasks. We overcome this poor localization property of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF). Qualitatively, our "DeepLab" system is able to localize segment boundaries at a level of accuracy which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 71.6% IOU accuracy in the test set. We show how these results can be obtained efficiently: Careful network re-purposing and a novel application of the 'hole' algorithm from the wavelet community allow dense computation of neural net responses at 8 frames per second on a modern GPU.

3,389 citations

Proceedings Article
07 May 2015
TL;DR: DeepLab as mentioned in this paper combines the responses at the final layer with a fully connected CRF to localize segment boundaries at a level of accuracy beyond previous methods, achieving 71.6% IOU accuracy in the test set.
Abstract: Deep Convolutional Neural Networks (DCNNs) have recently shown state of the art performance in high level vision tasks, such as image classification and object detection. This work brings together methods from DCNNs and probabilistic graphical models for addressing the task of pixel-level classification (also called "semantic image segmentation"). We show that responses at the final layer of DCNNs are not sufficiently localized for accurate object segmentation. This is due to the very invariance properties that make DCNNs good for high level tasks. We overcome this poor localization property of deep networks by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF). Qualitatively, our "DeepLab" system is able to localize segment boundaries at a level of accuracy which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 71.6% IOU accuracy in the test set. We show how these results can be obtained efficiently: Careful network re-purposing and a novel application of the 'hole' algorithm from the wavelet community allow dense computation of neural net responses at 8 frames per second on a modern GPU.

2,469 citations

Journal ArticleDOI
TL;DR: This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment.
Abstract: Future wireless networks are expected to constitute a distributed intelligent wireless communications, sensing, and computing platform, which will have the challenging requirement of interconnecting the physical and digital worlds in a seamless and sustainable manner. Currently, two main factors prevent wireless network operators from building such networks: (1) the lack of control of the wireless environment, whose impact on the radio waves cannot be customized, and (2) the current operation of wireless radios, which consume a lot of power because new signals are generated whenever data has to be transmitted. In this paper, we challenge the usual “more data needs more power and emission of radio waves” status quo, and motivate that future wireless networks necessitate a smart radio environment: a transformative wireless concept, where the environmental objects are coated with artificial thin films of electromagnetic and reconfigurable material (that are referred to as reconfigurable intelligent meta-surfaces), which are capable of sensing the environment and of applying customized transformations to the radio waves. Smart radio environments have the potential to provide future wireless networks with uninterrupted wireless connectivity, and with the capability of transmitting data without generating new signals but recycling existing radio waves. We will discuss, in particular, two major types of reconfigurable intelligent meta-surfaces applied to wireless networks. The first type of meta-surfaces will be embedded into, e.g., walls, and will be directly controlled by the wireless network operators via a software controller in order to shape the radio waves for, e.g., improving the network coverage. The second type of meta-surfaces will be embedded into objects, e.g., smart t-shirts with sensors for health monitoring, and will backscatter the radio waves generated by cellular base stations in order to report their sensed data to mobile phones. These functionalities will enable wireless network operators to offer new services without the emission of additional radio waves, but by recycling those already existing for other purposes. This paper overviews the current research efforts on smart radio environments, the enabling technologies to realize them in practice, the need of new communication-theoretic models for their analysis and design, and the long-term and open research issues to be solved towards their massive deployment. In a nutshell, this paper is focused on discussing how the availability of reconfigurable intelligent meta-surfaces will allow wireless network operators to redesign common and well-known network communication paradigms.

1,504 citations

Journal ArticleDOI
TL;DR: This paper attempts to present a comprehensive review of AI algorithms in rotating machinery fault diagnosis, from both the views of theory background and industrial applications.

1,287 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided a comprehensive overview of coalitional game theory and its usage in wireless and communication networks, and provided an in-depth analysis of the methodologies and approaches for using these games in both game theoretic and communication applications.
Abstract: In this tutorial, we provided a comprehensive overview of coalitional game theory, and its usage in wireless and communication networks. For this purpose, we introduced a novel classification of coalitional games by grouping the sparse literature into three distinct classes of games: canonical coalitional games, coalition formation games, and coalitional graph games. For each class, we explained in details the fundamental properties, discussed the main solution concepts, and provided an in-depth analysis of the methodologies and approaches for using these games in both game theory and communication applications. The presented applications have been carefully selected from a broad range of areas spanning a diverse number of research problems. The tutorial also sheds light on future opportunities for using the strong analytical tool of coalitional games in a number of applications. In a nutshell, this article fills a void in existing communications literature, by providing a novel tutorial on applying coalitional game theory in communication networks through comprehensive theory and technical details as well as through practical examples drawn from both game theory and communication application.

892 citations


Authors

Showing all 1351 results

NameH-indexPapersCitations
Chao Zhang127311984711
Wei Lu111197361911
Merouane Debbah9665241140
Romeo Ortega8277830251
Enrico Zio73112723809
Li Wang71162226735
Sébastien Candel6430316623
Jessy W. Grizzle6331017651
Nikos Paragios6234920737
Marco Di Renzo6251318264
Alessandro Astolfi5655314223
Silviu-Iulian Niculescu5655615340
Michel Fliess5533615381
Jean-Christophe Pesquet5036413264
Marios Kountouris4824111433
Network Information
Related Institutions (5)
Chalmers University of Technology
53.9K papers, 1.5M citations

89% related

Royal Institute of Technology
68.4K papers, 1.9M citations

89% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

89% related

Georgia Institute of Technology
119K papers, 4.6M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202221
2021159
2020239
2019307
2018337