scispace - formally typeset
Search or ask a question
Institution

Centre for Ultrahigh Bandwidth Devices for Optical Systems

NonprofitSydney, New South Wales, Australia
About: Centre for Ultrahigh Bandwidth Devices for Optical Systems is a nonprofit organization based out in Sydney, New South Wales, Australia. It is known for research contribution in the topics: Photonic crystal & Photonics. The organization has 461 authors who have published 1260 publications receiving 39940 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
Abstract: Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications. This article reviews recent progress in the use of silicon nitride and Hydex as non-silicon-based CMOS-compatible platforms for nonlinear optics. New capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement using these materials, and their potential future impact and challenges are covered.

1,218 citations

Journal ArticleDOI
TL;DR: This work proposes a novel way to achieve an exceptionally wide frequency range where metamaterial possesses negative effective permeability, and demonstrates that, with an appropriate design, a frequency band exceeding 100% is available for a range of signal amplitudes.
Abstract: We propose a novel way to achieve an exceptionally wide frequency range where metamaterial possesses negative effective permeability. This can be achieved by employing a nonlinear response of metamaterials. We demonstrate that, with an appropriate design, a frequency band exceeding 100% is available for a range of signal amplitudes. Our proposal provides a significant improvement over the linear approach, opening a road towards broadband negative refraction and its applications.

1,046 citations

Journal ArticleDOI
TL;DR: Some of the exciting developments so far in miniaturized optofluidic platforms bring fluid and light together and exploit their microscale interaction for a large variety of applications are overviewed.
Abstract: The realization of miniaturized optofluidic platforms offers potential for achieving more functional and more compact devices. Such integrated systems bring fluid and light together and exploit their microscale interaction for a large variety of applications. The high sensitivity of compact microphotonic devices can generate effective microfluidic sensors, with integration capabilities. By turning the technology around, the exploitation of fluid properties holds the promise of highly flexible, tunable or reconfigurable microphotonic devices. We overview some of the exciting developments so far.

946 citations

Journal ArticleDOI
TL;DR: This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics and key integrated MWP technologies are reviewed and the prospective of the field is discussed.
Abstract: Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

592 citations


Authors

Showing all 461 results

NameH-indexPapersCitations
Shanhui Fan139129282487
Yuri S. Kivshar126184579415
Benjamin J. Eggleton92119534486
Rong Wang9095032172
Min Gu7872922238
David J. Moss7570117695
Barry Luther-Davies7575522161
Dragomir N. Neshev6762117753
Andrey E. Miroshnichenko6745720432
Arnan Mitchell6459714059
Peter G. Tuthill6138711811
Wieslaw Krolikowski5950412836
Ross C. McPhedran5846513657
Duk-Yong Choi553899787
Stuart D. Jackson543139450
Network Information
Related Institutions (5)
Nippon Telegraph and Telephone
22.3K papers, 430.4K citations

87% related

Alcatel-Lucent
53.3K papers, 1.4M citations

84% related

Corning Inc.
13.5K papers, 254.5K citations

84% related

HRL Laboratories
5.9K papers, 169.9K citations

83% related

National Institute of Information and Communications Technology
10.5K papers, 156.1K citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20211
20201
20194
201831
2017109
2016127