scispace - formally typeset
Search or ask a question

Showing papers by "Centre national de la recherche scientifique published in 2002"


Journal ArticleDOI
10 Jan 2002-Nature
TL;DR: The analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions, which contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.
Abstract: Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.

4,895 citations


Journal ArticleDOI
TL;DR: In this article, the authors present some examples of modeling one and two-dimensional solid-state NMR spectra of I = ½ spin and quadrupolar nuclei, using laboratory-developed software that is made available to the NMR community.
Abstract: With the description of more and more complex one- and two-dimensional NMR experiments comes the need to develop methods to make a comprehensive interpretation of the various different experiments that can be carried out on the same sample or series of related samples. We present some examples of modelling one- and two-dimensional solid-state NMR spectra of I = ½ spin and quadrupolar nuclei, using laboratory-developed software that is made available to the NMR community. Copyright © 2001 John Wiley & Sons, Ltd.

3,551 citations


Journal ArticleDOI
TL;DR: A framework using concepts and results from community ecology, ecosystem ecology and evolutionary biology to provide a linkage between traits associated with the response of plants to environmental factors and traits that determine effects of plants on ecosystem functions is presented.
Abstract: Summary 1. The concept of plant functional type proposes that species can be grouped according to common responses to the environment and/or common effects on ecosystem processes. However, the knowledge of relationships between traits associated with the response of plants to environmental factors such as resources and disturbances (response traits), and traits that determine effects of plants on ecosystem functions (effect traits), such as biogeochemical cycling or propensity to disturbance, remains rudimentary. 2. We present a framework using concepts and results from community ecology, ecosystem ecology and evolutionary biology to provide this linkage. Ecosystem functioning is the end result of the operation of multiple environmental filters in a hierarchy of scales which, by selecting individuals with appropriate responses, result in assemblages with varying trait composition. Functional linkages and trade-offs among traits, each of which relates to one or several processes, determine whether or not filtering by different factors gives a match, and whether ecosystem effects can be easily deduced

2,786 citations


Journal ArticleDOI
TL;DR: The connections between time series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and present some of the novel methods for spectral analysis are described.
Abstract: [1] The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

2,116 citations


Journal ArticleDOI
Robert A. Holt1, G. Mani Subramanian1, Aaron L. Halpern1, Granger G. Sutton1, Rosane Charlab1, Deborah R. Nusskern1, Patrick Wincker2, Andrew G. Clark3, José M. C. Ribeiro4, Ron Wides5, Steven L. Salzberg6, Brendan J. Loftus6, Mark Yandell1, William H. Majoros6, William H. Majoros1, Douglas B. Rusch1, Zhongwu Lai1, Cheryl L. Kraft1, Josep F. Abril, Véronique Anthouard2, Peter Arensburger7, Peter W. Atkinson7, Holly Baden1, Véronique de Berardinis2, Danita Baldwin1, Vladimir Benes, Jim Biedler8, Claudia Blass, Randall Bolanos1, Didier Boscus2, Mary Barnstead1, Shuang Cai1, Kabir Chatuverdi1, George K. Christophides, Mathew A. Chrystal9, Michele Clamp10, Anibal Cravchik1, Val Curwen10, Ali N Dana9, Arthur L. Delcher1, Ian M. Dew1, Cheryl A. Evans1, Michael Flanigan1, Anne Grundschober-Freimoser11, Lisa Friedli7, Zhiping Gu1, Ping Guan1, Roderic Guigó, Maureen E. Hillenmeyer9, Susanne L. Hladun1, James R. Hogan9, Young S. Hong9, Jeffrey Hoover1, Olivier Jaillon2, Zhaoxi Ke1, Zhaoxi Ke9, Chinnappa D. Kodira1, Kokoza Eb, Anastasios C. Koutsos12, Ivica Letunic, Alex Levitsky1, Yong Liang1, Jhy-Jhu Lin1, Jhy-Jhu Lin6, Neil F. Lobo9, John Lopez1, Joel A. Malek6, Tina C. McIntosh1, Stephan Meister, Jason R. Miller1, Clark M. Mobarry1, Emmanuel Mongin13, Sean D. Murphy1, David A. O'Brochta11, Cynthia Pfannkoch1, Rong Qi1, Megan A. Regier1, Karin A. Remington1, Hongguang Shao8, Maria V. Sharakhova9, Cynthia Sitter1, Jyoti Shetty6, Thomas J. Smith1, Renee Strong1, Jingtao Sun1, Dana Thomasova, Lucas Q. Ton9, Pantelis Topalis12, Zhijian Tu8, Maria F. Unger9, Brian P. Walenz1, Aihui Wang1, Jian Wang1, Mei Wang1, X. Wang9, Kerry J. Woodford1, Jennifer R. Wortman6, Jennifer R. Wortman1, Martin Wu6, Alison Yao1, Evgeny M. Zdobnov, Hongyu Zhang1, Qi Zhao1, Shaying Zhao6, Shiaoping C. Zhu1, Igor F. Zhimulev, Mario Coluzzi14, Alessandra della Torre14, Charles Roth15, Christos Louis12, Francis Kalush1, Richard J. Mural1, Eugene W. Myers1, Mark Raymond Adams1, Hamilton O. Smith1, Samuel Broder1, Malcolm J. Gardner6, Claire M. Fraser6, Ewan Birney13, Peer Bork, Paul T. Brey15, J. Craig Venter1, J. Craig Venter6, Jean Weissenbach2, Fotis C. Kafatos, Frank H. Collins9, Stephen L. Hoffman1 
04 Oct 2002-Science
TL;DR: Analysis of the PEST strain of A. gambiae revealed strong evidence for about 14,000 protein-encoding transcripts, and prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted.
Abstract: Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.

2,033 citations


Journal ArticleDOI
TL;DR: In this paper, robust regressions were established between relative sea-level (RSL) data and benthic foraminifera oxygen isotopic ratios from the North Atlantic and Equatorial Pacific Ocean over the last climatic cycle.

1,908 citations



Journal ArticleDOI
Valerie Wood1, R. Gwilliam1, Marie-Adèle Rajandream1, M. Lyne1, Rachel Lyne1, A. Stewart2, J. Sgouros2, N. Peat2, Jacqueline Hayles2, Stephen Baker1, D. Basham1, Sharen Bowman1, Karen Brooks1, D. Brown1, Steve D.M. Brown1, Tracey Chillingworth1, Carol Churcher1, Mark O. Collins1, R. Connor1, Ann Cronin1, P. Davis1, Theresa Feltwell1, Andrew G. Fraser1, S. Gentles1, Arlette Goble1, N. Hamlin1, David Harris1, J. Hidalgo1, Geoffrey M. Hodgson1, S. Holroyd1, T. Hornsby1, S. Howarth1, Elizabeth J. Huckle1, Sarah E. Hunt1, Kay Jagels1, Kylie R. James1, L. Jones1, Matthew Jones1, S. Leather1, S. McDonald1, J. McLean1, P. Mooney1, Sharon Moule1, Karen Mungall1, Lee Murphy1, D. Niblett1, C. Odell1, Karen Oliver1, Susan O'Neil1, D. Pearson1, Michael A. Quail1, Ester Rabbinowitsch1, Kim Rutherford1, Simon Rutter1, David L. Saunders1, Kathy Seeger1, Sarah Sharp1, Jason Skelton1, Mark Simmonds1, R. Squares1, S. Squares1, K. Stevens1, K. Taylor1, Ruth Taylor1, Adrian Tivey1, S. Walsh1, T. Warren1, S. Whitehead1, John Woodward1, Guido Volckaert3, Rita Aert3, Johan Robben3, B. Grymonprez3, I. Weltjens3, E. Vanstreels3, Michael A. Rieger, M. Schafer, S. Muller-Auer, C. Gabel, M. Fuchs, C. Fritzc, E. Holzer, D. Moestl, H. Hilbert, K. Borzym4, I. Langer4, Alfred Beck4, Hans Lehrach4, Richard Reinhardt4, Thomas M. Pohl5, P. Eger5, Wolfgang Zimmermann, H. Wedler, R. Wambutt, Bénédicte Purnelle6, André Goffeau6, Edouard Cadieu7, Stéphane Dréano7, Stéphanie Gloux7, Valerie Lelaure7, Stéphanie Mottier7, Francis Galibert7, Stephen J. Aves8, Z. Xiang8, Cherryl Hunt8, Karen Moore8, S. M. Hurst8, M. Lucas9, M. Rochet9, Claude Gaillardin9, Victor A. Tallada10, Victor A. Tallada11, Andrés Garzón10, Andrés Garzón11, G. Thode11, Rafael R. Daga10, Rafael R. Daga11, L. Cruzado11, Juan Jimenez10, Juan Jimenez11, Miguel del Nogal Sánchez12, F. del Rey12, J. Benito12, Angel Domínguez12, José L. Revuelta12, Sergio Moreno12, John Armstrong13, Susan L. Forsburg14, L. Cerrutti1, Todd M. Lowe15, W. R. McCombie16, Ian T. Paulsen17, Judith A. Potashkin18, G. V. Shpakovski19, David W. Ussery20, Bart Barrell1, Paul Nurse2 
21 Feb 2002-Nature
TL;DR: The genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote, is sequenced and highly conserved genes important for eukARYotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing are identified.
Abstract: We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

1,686 citations


Journal ArticleDOI
TL;DR: The important role of migration in evolution is clarified, affecting spatial patterns, species ranges and adaptation to the environment; in particular, by emphasizing the crucial interaction between evolutionary and demographic processes.
Abstract: In general, individuals who survive to reproduce have genotypes that work relatively well under local conditions. Migrating or dispersing offspring elsewhere is likely to decrease an individual's or its offspring's fitness, not to mention the intrinsic costs and risks of dispersal. Gene flow into a population can counteract gene frequency changes because of selection, imposing a limit on local adaptation. In addition, the migrant flow tends to be higher from densely populated to sparsely populated areas. Thus, although the potential for adaptation might be greatest in poor and sparsely populated environments, gene flow will counteract selection more strongly in such populations. Recent papers, both theoretical and empirical, have clarified the important role of migration in evolution, affecting spatial patterns, species ranges and adaptation to the environment; in particular, by emphasizing the crucial interaction between evolutionary and demographic processes.

1,682 citations


Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: It is shown that the biomass, growth and reproduction of alpine plant species are higher when other plants are nearby, and that competition generally, but not exclusively, dominates interactions at lower elevations where conditions are less physically stressful.
Abstract: Plants can have positive effects on each other. For example, the accumulation of nutrients, provision of shade, amelioration of disturbance, or protection from herbivores by some species can enhance the performance of neighbouring species. Thus the notion that the distributions and abundances of plant species are independent of other species may be inadequate as a theoretical underpinning for understanding species coexistence and diversity. But there have been no large-scale experiments designed to examine the generality of positive interactions in plant communities and their importance relative to competition. Here we show that the biomass, growth and reproduction of alpine plant species are higher when other plants are nearby. In an experiment conducted in subalpine and alpine plant communities with 115 species in 11 different mountain ranges, we find that competition generally, but not exclusively, dominates interactions at lower elevations where conditions are less physically stressful. In contrast, at high elevations where abiotic stress is high the interactions among plants are predominantly positive. Furthermore, across all high and low sites positive interactions are more important at sites with low temperatures in the early summer, but competition prevails at warmer sites.

1,587 citations


Journal ArticleDOI
TL;DR: Modifications of hepcidin gene expression suggest a key role for hepciridin in iron homeostasis under various pathophysiological conditions, which may support the pharmaceutical use of hePCidin agonists and antagonists in various ironHomeostasis disorders.
Abstract: The present study was aimed at determining whether hepcidin, a recently identified peptide involved in iron metabolism, plays a role in conditions associated with both iron overload and iron deficiency. Hepcidin mRNA levels were assessed in two models of anemia, acute hemolysis provoked by phenylhydrazine and bleeding provoked by repeated phlebotomies. Hepcidin response to hypoxia was also studied, both ex vivo, in human hepatoma cells, and in vivo. Anemia and hypoxia were associated with a dramatic decrease in liver hepcidin gene expression, which may account for the increase in iron release from reticuloendothelial cells and increase in iron absorption frequently observed in these situations. A single injection of turpentine for 16 hours induced a sixfold increase in liver hepcidin mRNA levels and a twofold decrease in serum iron. The hyposideremic effect of turpentine was completely blunted in hepcidin-deficient mice, revealing hepcidin participation in anemia of inflammatory states. These modifications of hepcidin gene expression further suggest a key role for hepcidin in iron homeostasis under various pathophysiological conditions, which may support the pharmaceutical use of hepcidin agonists and antagonists in various iron homeostasis disorders.

Book
01 Jan 2002
TL;DR: In this article, the main reasons for the formation of economic clusters involving firms and/or households are analyzed: (i) externalities under perfect competition; (ii) increasing returns under monopolistic competition; and (iii) spatial competition under strategic interaction.
Abstract: We address the fundamental question arising in geographical economics: why do economic activities agglomerate in a small number of places? The main reasons for the formation of economic clusters involving firms and/or households are analyzed: (i) externalities under perfect competition; (ii) increasing returns under monopolistic competition; and (iii) spatial competition under strategic interaction. We review what has been accomplished in these three domains and identify a few general principles governing the organization of economic space. A few alternative, new approaches are also proposed. J. Japan. Int. Econ., December 1996, 10 (4), pp. 339–378. Kyoto University and University of Pennsylvania; and CORE, Universite Catholique de Louvain and CERAS–ENPC (URA 2036, CNRS).

Journal ArticleDOI
TL;DR: Genetic evidence is presented that IRT1 is essential for the uptake of iron from the soil, and it is shown that I RT1 is expressed in the external cell layers of the root, specifically in response to iron starvation.
Abstract: Plants are the principal source of iron in most diets, yet iron availability often limits plant growth. In response to iron deficiency, Arabidopsis roots induce the expression of the divalent cation transporter IRT1. Here, we present genetic evidence that IRT1 is essential for the uptake of iron from the soil. An Arabidopsis knockout mutant in IRT1 is chlorotic and has a severe growth defect in soil, leading to death. This defect is rescued by the exogenous application of iron. The mutant plants do not take up iron and fail to accumulate other divalent cations in low-iron conditions. IRT1‐green fluorescent protein fusion, transiently expressed in culture cells, localized to the plasma membrane. We also show, through promoter:: � -glucuronidase analysis and in situ hybridization, that IRT1 is expressed in the external cell layers of the root, specifically in response to iron starvation. These results clearly demonstrate that IRT1 is the major transporter responsible for high-affinity metal uptake under iron deficiency.

Journal ArticleDOI
TL;DR: It is demonstrated that when correction is made for the selection bias, the cross-validated error is no longer zero for a subset of only a few genes.
Abstract: In the context of cancer diagnosis and treatment, we consider the problem of constructing an accurate prediction rule on the basis of a relatively small number of tumor tissue samples of known type containing the expression data on very many (possibly thousands) genes. Recently, results have been presented in the literature suggesting that it is possible to construct a prediction rule from only a few genes such that it has a negligible prediction error rate. However, in these results the test error or the leave-one-out cross-validated error is calculated without allowance for the selection bias. There is no allowance because the rule is either tested on tissue samples that were used in the first instance to select the genes being used in the rule or because the cross-validation of the rule is not external to the selection process; that is, gene selection is not performed in training the rule at each stage of the cross-validation process. We describe how in practice the selection bias can be assessed and corrected for by either performing a cross-validation or applying the bootstrap external to the selection process. We recommend using 10-fold rather than leave-one-out cross-validation, and concerning the bootstrap, we suggest using the so-called .632+ bootstrap error estimate designed to handle overfitted prediction rules. Using two published data sets, we demonstrate that when correction is made for the selection bias, the cross-validated error is no longer zero for a subset of only a few genes.

Proceedings ArticleDOI
01 Jul 2002
TL;DR: This paper introduces a new quasi-conformal parameterization method, based on a least-squares approximation of the Cauchy-Riemann equations, which can parameterize large charts with complex borders, and introduces segmentation methods to decompose the model into charts with natural shapes, and a new packing algorithm to gather them in texture space.
Abstract: A Texture Atlas is an efficient color representation for 3D Paint Systems. The model to be textured is decomposed into charts homeomorphic to discs, each chart is parameterized, and the unfolded charts are packed in texture space. Existing texture atlas methods for triangulated surfaces suffer from several limitations, requiring them to generate a large number of small charts with simple borders. The discontinuities between the charts cause artifacts, and make it difficult to paint large areas with regular patterns.In this paper, our main contribution is a new quasi-conformal parameterization method, based on a least-squares approximation of the Cauchy-Riemann equations. The so-defined objective function minimizes angle deformations, and we prove the following properties: the minimum is unique, independent of a similarity in texture space, independent of the resolution of the mesh and cannot generate triangle flips. The function is numerically well behaved and can therefore be very efficiently minimized. Our approach is robust, and can parameterize large charts with complex borders.We also introduce segmentation methods to decompose the model into charts with natural shapes, and a new packing algorithm to gather them in texture space. We demonstrate our approach applied to paint both scanned and modeled data sets.

Journal ArticleDOI
07 Mar 2002-Nature
TL;DR: It is demonstrated that by introducing a periodic microstructure into such a polar material (SiC) a thermal infrared source can be fabricated that is coherent over large distances (many wavelengths) and radiates in well defined directions.
Abstract: A thermal light-emitting source, such as a black body or the incandescent filament of a light bulb, is often presented as a typical example of an incoherent source and is in marked contrast to a laser. Whereas a laser is highly monochromatic and very directional, a thermal source has a broad spectrum and is usually quasi-isotropic. However, as is the case with many systems, different behaviour can be expected on a microscopic scale. It has been shown recently that the field emitted by a thermal source made of a polar material is enhanced by more than four orders of magnitude and is partially coherent at a distance of the order of 10 to 100nm. Here we demonstrate that by introducing a periodic microstructure into such a polar material (SiC) a thermal infrared source can be fabricated that is coherent over large distances (many wavelengths) and radiates in well defined directions. Narrow angular emission lobes similar to antenna lobes are observed and the emission spectra of the source depends on the observation angle--the so-called Wolf effect. The origin of the coherent emission lies in the diffraction of surface-phonon polaritons by the grating.

Journal ArticleDOI
TL;DR: This work proposes several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and shows that they are secure against individual eavesdropping attacks.
Abstract: We propose several methods for quantum key distribution (QKD) based on the generation and transmission of random distributions of coherent or squeezed states, and we show that they are secure against individual eavesdropping attacks. These protocols require that the transmission of the optical line between Alice and Bob is larger than 50%, but they do not rely on "sub-shot-noise" features such as squeezing. Their security is a direct consequence of the no-cloning theorem, which limits the signal-to-noise ratio of possible quantum measurements on the transmission line. Our approach can also be used for evaluating various QKD protocols using light with Gaussian statistics.

Journal ArticleDOI
TL;DR: Results suggest that OST1 acts in the interval between ABA perception and ROS production, and the relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1 and gca2) are discussed.
Abstract: During drought, the plant hormone abscisic acid (ABA) triggers stomatal closure, thus reducing water loss. Using infrared thermography, we isolated two allelic Arabidopsis mutants (ost1-1 and ost1-2) impaired in the ability to limit their transpiration upon drought. These recessive ost1 mutations disrupted ABA induction of stomatal closure as well as ABA inhibition of light-induced stomatal opening. By contrast, the ost1 mutations did not affect stomatal regulation by light or CO(2), suggesting that OST1 is involved specifically in ABA signaling. The OST1 gene was isolated by positional cloning and was found to be expressed in stomatal guard cells and vascular tissue. In-gel assays indicated that OST1 is an ABA-activated protein kinase related to the Vicia faba ABA-activated protein kinase (AAPK). Reactive oxygen species (ROS) were shown recently to be an essential intermediate in guard cell ABA signaling. ABA-induced ROS production was disrupted in ost1 guard cells, whereas applied H(2)O(2) or calcium elicited the same degree of stomatal closure in ost1 as in the wild type. These results suggest that OST1 acts in the interval between ABA perception and ROS production. The relative positions of ost1 and the other ABA-insensitive mutations in the ABA signaling network (abi1-1, abi2-1, and gca2) are discussed.

Journal ArticleDOI
TL;DR: Recent evidence indicates that recognition of infectious nonself agents results from interactions between microbial wall components and extracellular pattern recognition proteins, and evolutionary perspectives on the antimicrobial defenses of Drosophila are discussed.
Abstract: In response to microbial infections, Drosophila mounts a multifaceted immune response involving humoral reactions that culminate in the destruction of invading organisms by lytic peptides. These defense mechanisms are activated via two distinct signaling pathways. One of these, the Toll pathway, controls resistance to fungal and Gram-positive bacterial infections, whereas the Imd pathway is responsible for defense against Gram-negative bacterial infections. Current evidence indicates that recognition of infectious nonself agents results from interactions between microbial wall components and extracellular pattern recognition proteins. We discuss here evolutionary perspectives on our present understanding of the antimicrobial defenses of Drosophila.

Journal ArticleDOI
TL;DR: DA has to be considered as a key neuroregulator which contributes to behavioral adaptation and to anticipatory processes necessary for preparing voluntary action consequent upon intention, and it can be suggested that a correlation exists between DA innervation and expression of cognitive capacities.

Journal ArticleDOI
01 Aug 2002-Carbon
TL;DR: In this paper, it is shown that for these applications the electrochemical properties of multiwalled and single walled (SWNTs) nanotubes are essentially dominated by their mesoporous character, and an almost linear dependence has been found between the mesopore volume and Cirr.

Journal ArticleDOI
TL;DR: This article showed that passive immunization with this anti-Aβ monoclonal antibody can very rapidly reverse memory impairment in certain learning and memory tasks in the PDAPP mouse model of AD, owing perhaps to enhanced peripheral clearance and sequestration of a soluble brain Aβ species.
Abstract: We have previously shown that chronic treatment with the monoclonal antibody m266, which is specific for amyloid β-peptide (Aβ), increases plasma concentrations of Aβ and reduces Aβ burden in the PDAPP transgenic mouse model of Alzheimer's disease (AD). We now report that administration of m266 to PDAPP mice can rapidly reverse memory deficits in both an object recognition task and a holeboard learning and memory task, but without altering brain Aβ burden. We also found that an Aβ/antibody complex was present in both the plasma and the cerebrospinal fluid of m266-treated mice. Our data indicate that passive immunization with this anti-Aβ monoclonal antibody can very rapidly reverse memory impairment in certain learning and memory tasks in the PDAPP mouse model of AD, owing perhaps to enhanced peripheral clearance and (or) sequestration of a soluble brain Aβ species.

Journal ArticleDOI
TL;DR: In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and BCl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state.

Journal ArticleDOI
TL;DR: It is concluded that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators.

Journal ArticleDOI
15 Nov 2002-Science
TL;DR: A spontaneous, rhythmic activity initiated in the subiculum of slices from patients with temporal lobe epilepsy was described, similar to interictal discharges of patient electroencephalograms.
Abstract: The origin and mechanisms of human interictal epileptic discharges remain unclear. Here, we describe a spontaneous, rhythmic activity initiated in the subiculum of slices from patients with temporal lobe epilepsy. Synchronous events were similar to interictal discharges of patient electroencephalograms. They were suppressed by antagonists of either glutamatergic or γ-aminobutyric acid (GABA)–ergic signaling. The network of neurons discharging during population events comprises both subicular interneurons and a subgroup of pyramidal cells. In these pyramidal cells, GABAergic synaptic events reversed at depolarized potentials. Depolarizing GABAergic responses in neurons downstream to the sclerotic CA1 region contribute to human interictal activity.

Journal ArticleDOI
TL;DR: The results strongly support the proposed role of hepcidin as a putative iron-regulatory hormone and the animal models devoid of or overexpressing the peptide represent valuable tools for investigating iron homeostasis in vivo and for deciphering the molecular mechanisms of hePCidin action.
Abstract: We recently reported the hemochromatosis-like phenotype observed in our Usf2 knockout mice. In these mice, as in murine models of hemochromatosis and patients with hereditary hemochromatosis, iron accumulates in parenchymal cells (in particular, liver and pancreas), whereas the reticuloendothelial system is spared from this iron loading. We suggested that this phenotypic trait could be attributed to the absence, in the Usf2 knockout mice, of a secreted liver-specific peptide, hepcidin. We conjectured that the reverse situation, namely overexpression of hepcidin, might result in phenotypic traits of iron deficiency. This question was addressed by generating transgenic mice expressing hepcidin under the control of the liver-specific transthyretin promoter. We found that the majority of the transgenic mice were born with a pale skin and died within a few hours after birth. These transgenic animals had decreased body iron levels and presented severe microcytic hypochromic anemia. So far, three mosaic transgenic animals have survived. They were unequivocally identified by physical features, including reduced body size, pallor, hairless and crumpled skin. These pleiotropic effects were found to be associated with erythrocyte abnormalities, with marked anisocytosis, poikylocytosis and hypochromia, which are features characteristic of iron-deficiency anemia. These results strongly support the proposed role of hepcidin as a putative iron-regulatory hormone. The animal models devoid of hepcidin (the Usf2 knockout mice) or overexpressing the peptide (the transgenic mice presented in this paper) represent valuable tools for investigating iron homeostasis in vivo and for deciphering the molecular mechanisms of hepcidin action.

Journal ArticleDOI
04 Oct 2002-Science
TL;DR: 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity are identified and marked diversification relative to Drosophila melanogaster is detected, confirming that sequence diversification is accompanied by specific responses to different immune challenges.
Abstract: We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.

Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: This work measures how long the drop remains in contact with the solid during the shock to help quantify the efficiency of water-repellent surfaces (super-hydrophobic solids) and to improve water-cooling of hot solids, which is limited by the rebounding of drops as well as by temperature effects.
Abstract: When a liquid drop lands on a solid surface without wetting it, it bounces with remarkable elasticity. Here we measure how long the drop remains in contact with the solid during the shock, a problem that was considered by Hertz for a bouncing ball. Our findings could help to quantify the efficiency of water-repellent surfaces (super-hydrophobic solids) and to improve water-cooling of hot solids, which is limited by the rebounding of drops as well as by temperature effects.

Journal ArticleDOI
31 Jan 2002-Nature
TL;DR: The complete genome sequence and its analysis of strain GMI1000 suggests that bacterial plant pathogens and animal pathogens harbour distinct arrays of specialized type III-dependent effectors.
Abstract: Ralstonia solanacearum is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. It is a model system for the dissection of molecular determinants governing pathogenicity. We present here the complete genome sequence and its analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb chromosome and a 2.1-Mb megaplasmid. Both replicons have a mosaic structure providing evidence for the acquisition of genes through horizontal gene transfer. Regions containing genetically mobile elements associated with the percentage of G+C bias may have an important function in genome evolution. The genome encodes many proteins potentially associated with a role in pathogenicity. In particular, many putative attachment factors were identified. The complete repertoire of type III secreted effector proteins can be studied. Over 40 candidates were identified. Comparison with other genomes suggests that bacterial plant pathogens and animal pathogens harbour distinct arrays of specialized type III-dependent effectors.