scispace - formally typeset
Search or ask a question
Institution

Chalk River Laboratories

Other
About: Chalk River Laboratories is a based out in . It is known for research contribution in the topics: Neutron diffraction & Neutron scattering. The organization has 2297 authors who have published 2700 publications receiving 73287 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the B-cation properties of 6 compounds with formula Sr2Fe1.9M0.1O5+y (M = Mn, Cr, Co; y = 0, 0.5) were synthesized in air and argon, exhibiting surprisingly different properties depending on the Bcation type in spite of the low doping level.
Abstract: Six compounds with formula Sr2Fe1.9M0.1O5+y (M = Mn, Cr, Co; y = 0, 0.5) were synthesized in air and argon, exhibiting surprisingly different properties depending on the B-cation type in spite of the low (5%) doping level. All argon synthesized phases, y ∼ 0, have long range brownmillerite ordering of oxygen vacancies with Icmm symmetry as shown by neutron diffraction (ND). All show long-range G-type antiferromagnetic order with Neel temperatures, TN, from variable temperature ND of 649(3)K, 636(2)K and 668(5)K for Cr, Mn and Co-compounds, respectively, compared with Sr2Fe2O5, TN = 693 K. Competing ferromagnetic interactions may be responsible for the anomalously low value in the M = Mn case. The air synthesized phases with y ∼ 0.5 show surprising variation with M as investigated by X-ray, TOF and constant wavelength neutron diffractions. The M = Co compound is isostructural with Sr4Fe4O11 (Sr2Fe2O5.5), Cmmm, while the M = Cr phase is cubic, Pm-3m, and that for M = Mn appears to be cubic but the reflections are systematically broadened in a manner which suggests a local Cmmm structure. NPDF studies show that the local structure of the Cr phase is better described in terms of a Cmmm ordering of oxygen vacancies with Fe–O coordination numbers of five and six. The M = Co material shows C-type antiferromagnetic long-range magnetic order at 4 K as found for Sr4Fe4O11. TN ∼ 230 K is inferred from a ZFC-FC magnetic susceptibility divergence compared with TN = 232 K for un-doped Sr4Fe4O11. The M = Cr and Mn compounds show no long-range magnetic ordering down to 4 K, but the divergence of ZFC and FC susceptibility data indicative of spin glass-like transitions occur at ∼60 K and ∼45 K for Cr and Mn, respectively. ND shows both diffuse and sharp Bragg magnetic reflections at positions consistent with a Cmmm cell for the M = Mn phase. For the M = Cr material, a very weak magnetic Bragg peak indexed as (1/2 1/2 1/2), consistent with a G-type AF order, is found at 4 K. These results rule out a spin glass-like ground state for both materials.

19 citations

Journal ArticleDOI
TL;DR: In this article, a systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride.
Abstract: A systematic study of separating the actinides from each other in 1 M hydrochloric acid media has been carried out using selective oxidation/reduction processes followed by coprecipitation with neodymium fluoride. We have optimized two such procedures, one with bromate and another with permanganate, for the sequential separation of Am, Pu, Np, and U isotopes. The first procedure involves oxidation of Pu, Np, and U to +6 state in 1 M HCl media at 85° C with 30% NaBrO3 and separation from trivalent Am by collecting the latter on the first NdF3 coprecipitated source. Plutonium is then reduced and converted to +4 oxidation state with 40% NaNO2 at 85°C, while Np and U are kept oxidized with additional bromate in 50–70°C hot solution, thus separating Pu by collection on a second NdF3 source. At this stage, Np present in the filtrate is reduced with hydroxylamine hydrochloride and separated from U by collecting on a third source. Subsequently, U is reduced with 30% TiCl3 and co-precipitated on a final source. The second procedure, which employs KMnO4 in 1 M HCl media at 60–85°C for oxidizing Pu, Np, and U, and separating from Am, produced MnO2 which is collected along with Am on the coprecipitated NdF3. This MnO2 is dissolved on the filter itself with 1 mL of acidified 1.5% H2O2 without any degradation of the α-spectra. After evaporating the filtrate to destroy H2O2, Pu, Np, and U are separated by following steps similar to those in the bromate procedure. The recoveries of the actinides with both procedures are >99%. The decontamination factors are between 103 and 104. The precision and accuracy of measurements, as expressed by the relative standard deviation of replicate analyses, are within 5%. Absolute detection limits for a one-day count on a 600 mm2 detector at 32% counting efficiency and 450 mm2 detector at 27% counting efficiency are about 2.7×10−4 and 3.2×10−4 Bq, respectively. These procedures have been applied to the analysis of actinides in environmental samples.

19 citations

Journal ArticleDOI
TL;DR: In this article, the effect of ion irradiation on the migration of Fe in the Zr lattice was investigated using high-energy forward-elastic-recoil measurements to yield information on the threshold displacement energies for Zr and Fe or Cr in these lattices, as well as the role of secondary displacements of lattice atoms by recoil impurities at low electron energies.
Abstract: Ion-beam-analysis techniques are being used to provide an understanding of the nature of collision cascades, irradiation-induced phase changes, lattice location of solute atoms and defect-solute atom interactions in various zirconium alloys. In zirconium intermetallic compounds, such as Zr3Fe, Zr2Fe, ZrFe2, and Zr3(Fex,Ni1 − x), electron and ion irradiations have been used to obtain detailed information on the crystalline-to-amorphous transformation occurring during the irradiation. Transmission-electron-microscopy (TEM) observations have provided information on the nature of the damage produced in individual cascades, the critical dose required for amorphization, and the critical temperature for amorphization. In a study on the electron-energy dependence of amorphization in Zr3Fe, Zr2Fe and ZrCr2 in situ high-voltage-electron-microscope investigations were combined with high-energy forward-elastic-recoil measurements to yield information on the threshold displacement energies for Zr and Fe or Cr in these lattices, as well as the role of secondary displacements of lattice atoms by recoil impurities (C,O) at low electron energies. In Zr implanted with 56Fe ions and subsequently bombarded with 40Ar ions at 723 K, subsequent secondary-ion-mass-spectrometry (SIMS) analyses were used to monitor the effect of irradiation on the migration of Fe in the Zr lattice. In addition, ion-channeling investigations have been used to determine the lattice sites of solute atoms in Zr as well as the details of the interaction between the solute atoms and the irradiation-produced defects.

19 citations

Journal ArticleDOI
TL;DR: In this article, the steady state characteristics of supercritical carbon dioxide natural circulation were investigated in a simple rectangular loop with vertically placed heating section, and the effects of system pressure and inlet temperature on the system behavior were also investigated.

19 citations


Authors

Showing all 2298 results

NameH-indexPapersCitations
Michael D. Guiver7828820540
Robert J. Birgeneau7858722686
Mike D. Flannigan7121121327
Martin T. Dove6139614767
Luis Rodrigo5834112963
André Longtin5626016372
David Mitlin5619615479
John Katsaras552209263
John E. Greedan5539112171
Gang Li484067713
Matthew G. Tucker452247288
Bruce D. Gaulin452846698
Erick J. Dufourc431445882
Norbert Kučerka431197319
Stephen J. Skinner421948522
Network Information
Related Institutions (5)
Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

86% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Paul Scherrer Institute
23.9K papers, 890.1K citations

84% related

Argonne National Laboratory
64.3K papers, 2.4M citations

83% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202284
202176
202072
201974
2018104