scispace - formally typeset
Search or ask a question
Institution

Chalk River Laboratories

Other
About: Chalk River Laboratories is a based out in . It is known for research contribution in the topics: Neutron diffraction & Neutron scattering. The organization has 2297 authors who have published 2700 publications receiving 73287 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA is summarized and mitochondrial dynamics are addressed regarding their roles in controlling metabolism and apoptosis.
Abstract: Elevated metabolism is a key hallmark of multiple cancers, serving to fulfill high anabolic demands. Ovarian cancer (OVCA) is the fifth leading cause of cancer deaths in women with a high mortality rate (45%). Chemoresistance is a major hurdle for OVCA treatment. Although substantial evidence suggests that metabolic reprogramming contributes to anti-apoptosis and the metastasis of multiple cancers, the link between tumor metabolism and chemoresistance in OVCA remains unknown. While clinical trials targeting metabolic reprogramming alone have been met with limited success, the synergistic effect of inhibiting tumor-specific metabolism with traditional chemotherapy warrants further examination, particularly in OVCA. This review summarizes the role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA. Within this context, mitochondrial dynamics (fission, fusion and cristae structure) are addressed regarding their roles in controlling metabolism and apoptosis, closely associated with chemosensitivity. The roles of multiple key oncogenes (Akt, HIF-1α) and tumor suppressors (p53, PTEN) in metabolic regulation are also described. Next, this review summarizes recent research of metabolism and future direction. Finally, we examine clinical drugs and inhibitors to target glycolytic metabolism, as well as the rationale for such strategies as potential therapeutics to overcome chemoresistant OVCA.

41 citations

Journal ArticleDOI
TL;DR: It is demonstrated that NaFe1−xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Néel temperature, indicative of a Mott insulator.
Abstract: Iron-based superconductivity develops near an antiferromagnetic order and out of a bad-metal normal state, which has been interpreted as originating from a proximate Mott transition. Whether an actual Mott insulator can be realized in the phase diagram of the iron pnictides remains an open question. Here we use transport, transmission electron microscopy, X-ray absorption spectroscopy, resonant inelastic X-ray scattering and neutron scattering to demonstrate that NaFe1-xCuxAs near x≈0.5 exhibits real space Fe and Cu ordering, and are antiferromagnetic insulators with the insulating behaviour persisting above the Neel temperature, indicative of a Mott insulator. On decreasing x from 0.5, the antiferromagnetic-ordered moment continuously decreases, yielding to superconductivity ∼x=0.05. Our discovery of a Mott-insulating state in NaFe1-xCuxAs thus makes it the only known Fe-based material, in which superconductivity can be smoothly connected to the Mott-insulating state, highlighting the important role of electron correlations in the high-Tc superconductivity.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the deposition rate of calcium carbonate on a heat-transfer surface using a calcium-47 radiotracer and compared to the measured rate of thermal fouling.
Abstract: The deposition rate of calcium carbonate on a heat-transfer surface has been measured using a calcium-47 radiotracer and compared to the measured rate of thermal fouling. The crystalline phase of calcium carbonate that precipitates depends on the degree of supersaturation at the heat-transfer surface, with aragonite precipitating at higher supersaturations and calcite precipitating at lower supersaturations. Whereas the mass deposition rates were constant with time, the thermal fouling rates decreased throughout the course of each experiment as a result of densification of the deposit. It is proposed that the densification was driven by the temperature gradient across the deposit together with the retrograde solubility of calcium carbonate. The temperature dependence of the deposition rate yielded an activation energy of 79 ± 4 kJ/mol for the precipitation of calcium carbonate on a heat-transfer surface.

41 citations

Journal ArticleDOI
TL;DR: In this article, the first-order transition from P4/ncc to Pnma at 980 K to 1200 K hides the transition from the higher-temperature phase P 4/nmm (via Cmca) to pnma, and at 623(24) K, Pnema transforms via octahedral rotations in a tricritical transition to P21/n.
Abstract: Neutron powder diffraction results on the tetragonal-orthorhombic and orthorhombic-monoclinic structural phase transitions of tungsten oxide are reported. The observed first-order transition from P4/ncc to Pnma at 980 K to 1200 K hides the transition from the higher-temperature phase P4/nmm (via Cmca) to Pnma. At 623(24) K, Pnma transforms via octahedral rotations in a tricritical transition to P21/n. The structural characteristics and thermodynamic properties of the order parameters are described in detail. The evolution of the WO6 octahedra and the atomic positions is documented using such parameters as the octahedral elongation, octahedral variance and the off-centre displacement vectors for the tungsten atoms. It is shown that the phase transitions can be adequately described within the framework of a decoupled mean-field Landau theory.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the intrinsic efficiency of Cs2LiYCl6 :Ce scintillator for fast-neutron detection has been determined for the natural-Li crystal.
Abstract: Samples of Cs2LiYCl6 :Ce (CLYC) scintillator have been characterized using monoenergetic neutron beams in the energy range 4.1–5.5 MeV. Four crystals with dimensions (thickness×diameter) of 1″×1″, 1″×2″, and 2″×2″ were evaluated, including one crystal with natural concentrations of Li isotopes and three that were enriched in 6 Li. The intrinsic efficiency of CLYC for fast-neutron detection has been determined for the natural-Li crystal. These measurements were translated into reaction cross-sections, and show good agreement with available cross-section data for neutron interactions with the 35Cl component of CLYC. Furthermore, it is shown that the charged-particle energy released in the fast-neutron reactions on 35 Cl varies linearly with the energy of the incoming neutron. These results verify the efficacy of CLYC for fast-neutron spectroscopy in a range of applications.

41 citations


Authors

Showing all 2298 results

NameH-indexPapersCitations
Michael D. Guiver7828820540
Robert J. Birgeneau7858722686
Mike D. Flannigan7121121327
Martin T. Dove6139614767
Luis Rodrigo5834112963
André Longtin5626016372
David Mitlin5619615479
John Katsaras552209263
John E. Greedan5539112171
Gang Li484067713
Matthew G. Tucker452247288
Bruce D. Gaulin452846698
Erick J. Dufourc431445882
Norbert Kučerka431197319
Stephen J. Skinner421948522
Network Information
Related Institutions (5)
Bhabha Atomic Research Centre
31.2K papers, 570.7K citations

86% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

85% related

Paul Scherrer Institute
23.9K papers, 890.1K citations

84% related

Argonne National Laboratory
64.3K papers, 2.4M citations

83% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202284
202176
202072
201974
2018104