scispace - formally typeset
Search or ask a question
Institution

Chandigarh University

EducationMohali, India
About: Chandigarh University is a education organization based out in Mohali, India. It is known for research contribution in the topics: Materials science & Computer science. The organization has 1358 authors who have published 2104 publications receiving 10050 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: BEST: a Blockchain-based secure energy trading scheme for electric vehicles (EVs) is proposed in this paper, and blockchain is used to validate EVs’ requests in a distributed manner, ensuring resilience against the single point of failure.

200 citations

Journal ArticleDOI
TL;DR: The IoT is nothing but a computing concept in which everyday objects with embedded hardware/devices are connected to a network or are simply online.
Abstract: We live in the age of After Google (AG), where information is just one click away and talking just one touch away. The near future of the AG age is the Internet of Things (IoT), where physical things connected over a network will take part in Internet activities to exchange information about themselves and their surroundings. In other words, the IoT is nothing but a computing concept in which everyday objects with embedded hardware/devices are connected to a network or are simply online.

189 citations

Journal ArticleDOI
TL;DR: Results obtained prove that the proposed scheme is effective for trading the energy between EVs and CS while securing the underlying trading transactions using blockchain, and the communication and computation cost of the proposed framework comes out to be small which proves that it can be used in real-world applications.

174 citations

Journal ArticleDOI
TL;DR: In this article, an attempt has been made to evaluate the effectiveness of two cooling and lubrication techniques namely cryogenic cooling and hybrid nanoadditive-based minimum quantity lubrication (MQL).
Abstract: Owing to superior physio-chemical characteristics, titanium alloys are widely adopted in numerous fields such as medical, aerospace, and military applications. However, titanium alloys have poor machinability due to its low thermal conductivity which results in high temperature during machining. Numerous lubrication and cooling techniques have already been employed to reduce the harmful environmental footprints and temperature elevation and to improve the machining of titanium alloys. In this current work, an attempt has been made to evaluate the effectiveness of two cooling and lubrication techniques namely cryogenic cooling and hybrid nanoadditive–based minimum quantity lubrication (MQL). The key objective of this experimental research is to compare the influence of cryogenic CO2 and hybrid nanofluid–based MQL techniques for turning Ti–6Al–4V. The used hybrid nanofluid is alumina (Al2O3) with multi-walled carbon nanotubes (MWCNTs) dispersed in vegetable oil. Taguchi-based L9 orthogonal-array was used for the design of the experiment. The design variables were cutting speed, feed rate, and cooling technique. Results showed that the hybrid nanoadditives reduced the average surface roughness by 8.72%, cutting force by 11.8%, and increased the tool life by 23% in comparison with the cryogenic cooling. Nevertheless, the cryogenic technique showed a reduction of 11.2% in cutting temperature compared to the MQL-hybrid nanofluids at low and high levels of cutting speed and feed rate. In this regard, a milestone has been achieved by implementing two different sustainable cooling/lubrication techniques.

170 citations

Journal ArticleDOI
TL;DR: A smart security framework for VANETs equipped with edge computing nodes and 5G technology has been designed to enhance the capabilities of communication and computation in the modern smart city environment.
Abstract: With the exponential growth of technologies such as IoT, edge computing, and 5G, a tremendous amount of structured and unstructured data is being generated from different applications in the smart citiy environment in recent years. Thus, there is a need to develop sophisticated techniques that can efficiently process such huge volumes of data. One of the important components of smart cities, ITS, has led to many applications, including surveillance, infotainment, real-time traffic monitoring, and so on. However, its security, performance, and availability are major concerns facing the research community. The existing solutions, such as cellular networks, RSUs, and mobile cloud computing, are far from perfect because these are highly dependent on centralized architecture and bear the cost of additional infrastructure deployment. Also, the conventional methods of data processing are not capable of handling dynamic and scalable data efficiently. To mitigate these issues, this article proposes an advanced vehicular communication technique where RSUs are proposed to be replaced by edge computing platforms. Then secure V2V and V2E communication is designed using the Quotient filter, a probabilistic data structure. In summary, a smart security framework for VANETs equipped with edge computing nodes and 5G technology has been designed to enhance the capabilities of communication and computation in the modern smart city environment. It has been experimentally demonstrated that use of edge nodes as an intermediate interface between vehicle and cloud reduces access latency and avoids congestion in the backbone network, which allows quick decisions to be made based on the traffic scenario in the geographical location of the vehicles. The proposed scheme outperforms the conventional vehicular models by providing an energy-efficient secure system with minimum delay.

143 citations


Authors

Showing all 1533 results

NameH-indexPapersCitations
Neeraj Kumar7658718575
Rupinder Singh424587452
Vijay Kumar331473811
Radha V. Jayaram321143100
Suneel Kumar321805358
Amanpreet Kaur323675713
Vikas Sharma311453720
Munish Kumar Gupta311923462
Vijay Kumar301132870
Shashi Kant291602990
Sunpreet Singh291532894
Gagangeet Singh Aujla281092437
Deepak Kumar282732957
Dilbag Singh27771723
Tejinder Singh271622931
Network Information
Related Institutions (5)
VIT University
24.4K papers, 261.8K citations

87% related

Thapar University
8.5K papers, 130.3K citations

85% related

Amity University
12.7K papers, 86K citations

85% related

SRM University
11.7K papers, 103.7K citations

85% related

National Institute of Technology, Rourkela
10.7K papers, 150.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022182
2021893
2020373
2019233
2018174