scispace - formally typeset
Search or ask a question
Institution

Charles University in Prague

EducationPrague, Czechia
About: Charles University in Prague is a education organization based out in Prague, Czechia. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 32392 authors who have published 74435 publications receiving 1804208 citations.


Papers
More filters
Journal ArticleDOI
15 Dec 2005-Nature
TL;DR: It is proposed that the spatial organization of growth in plant cells requires the local RhoGDI-regulated activation of the RHD2/AtrbohC NADPH oxidase, which is required for hair growth.
Abstract: Root hairs are cellular protuberances extending from the root surface into the soil; there they provide access to immobile inorganic ions such as phosphate, which are essential for growth. Their cylindrical shape results from a polarized mechanism of cell expansion called tip growth in which elongation is restricted to a small area at the surface of the hair-forming cell (trichoblast) tip. Here we identify proteins that spatially control the sites at which cell growth occurs by isolating Arabidopsis mutants (scn1) that develop ectopic sites of growth on trichoblasts. We cloned SCN1 and showed that SCN1 is a RhoGTPase GDP dissociation inhibitor (RhoGDI) that spatially restricts the sites of growth to a single point on the trichoblast. We showed previously that localized production of reactive oxygen species by RHD2/AtrbohC NADPH oxidase is required for hair growth; here we show that SCN1/AtrhoGDI1 is a component of the mechanism that focuses RHD2/AtrbohC-catalysed production of reactive oxygen species to hair tips during wild-type development. We propose that the spatial organization of growth in plant cells requires the local RhoGDI-regulated activation of the RHD2/AtrbohC NADPH oxidase.

324 citations

Journal ArticleDOI
TL;DR: Controversy regarding the relative efficacy of treatments for the relief of the symptoms of benign prostatic hyperplasia (BPH) is investigated.
Abstract: BACKGROUND Controversy regarding the relative efficacy of treatments for the relief of the symptoms of benign prostatic hyperplasia (BPH). METHODS This was a 6-month double-blind randomized equivalence study that compared the effects of a plant extract (320 mg Permixon®) with those of a 5α-reductase inhibitor (5 mg finasteride) in 1,098 men with moderate BPH using the International Prostate Symptom Score (IPSS) as the primary end-point. RESULTS Both Permixon® and finasteride decreased the IPSS (−37% and −39%, respectively), improved quality of life (by 38 and 41%), and increased peak urinary flow rate (+25% and +30%, P = 0.035), with no statistical difference in the percent of responders with a 3 ml/sec improvement. Finasteride markedly decreased prostate volume (−18%) and serum PSA levels (−41%); Permixon® improved symptoms with little effect on volume (−6%) and no change in PSA levels. Permixon® fared better than finasteride in a sexual function questionnaire and gave rise to less complaints of decreased libido and impotence. CONCLUSIONS Both treatments relieve the symptoms of BPH in about two-thirds of patients but, unlike finasteride, Permixon® has little effect on so-called androgen-dependent parameters. This suggests that other pathways might also be involved in the symptomatology of BPH. © 1996 Wiley-Liss, Inc.

324 citations

Journal ArticleDOI
TL;DR: Genome-wide association analyses based on whole-genome sequencing and imputation identify 40 new risk variants for colorectal cancer, including a strongly protective low-frequency variant at CHD1 and loci implicating signaling and immune function in disease etiology.
Abstract: To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 × 10-8, bringing the number of known independent signals for CRC to ~100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.

324 citations

Journal ArticleDOI
01 Jan 2000
TL;DR: Modification of dosage schedule and synthesis of new anthracycline analogues may represent alternative approaches to mitigate anthrACYcline cardiotoxicity while preserving antitumour activity.
Abstract: Anthracycline antibiotics are among the most effective and widely used antineoplastic drugs. Their usefulness is limited by a cumulative dose-related cardiotoxicity, whose precise mechanisms are not clear as yet. The principal role is possibly exerted by free oxygen radicals generated by "redox-cycling" of anthracycline molecule and/or by the formation of anthracycline-ferric ion complexes. The iron catalyzes the hydroxyl radical production via Haber-Weiss reaction. The selective toxicity of ANT against cardiomyocytes results from high accumulation of ANT in cardiac tissue, appreciable production of oxygen radicals by mitochondria and relatively poor antioxidant defense systems. Other additional mechanisms of the anthracycline cardiotoxicity have been proposed--calcium overload, histamine release and impairment in autonomic regulation of heart function. The currently used methods for an early identification of anthracycline cardiotoxicity comprise ECG measurement, biochemical markers, functional measurement and morphologic examination. Among a plenty of studied cardioprotective agents only dexrazoxane (ICRF-187) has been approved for clinical use. Its protective effect likely consists in intracellular chelating of iron. However, in high doses dexrazoxane itself may cause myelotoxicity. This fact encourages investigation of new cardioprotectants with lower toxicity. Orally active iron chelators and flavonoids attract more attention. Modification of dosage schedule and synthesis of new anthracycline analogues may represent alternative approaches to mitigate anthracycline cardiotoxicity while preserving antitumour activity.

323 citations

Journal ArticleDOI
TL;DR: The goal of this review is to critically examine current understanding of molecular mechanisms involved in induction of xenobiotic metabolizing CYP genes of human families CYP1, CYP2 and CYP3 by exogenous chemicals in extrahepatic tissues.
Abstract: Numerous members of the cytochrome P450 (CYP) superfamily are induced after exposure to a variety of xenobiotics in human liver. We have gained considerable mechanistic insights into these processes in hepatocytes and multiple ligand-activated transcription factors have been identified over the past two decades. Families CYP1, CYP2 and CYP3 involved in xenobiotic metabolism are also expressed in a range of extrahepatic tissues (e.g. intestine, brain, kidney, placenta, lung, adrenal gland, pancreas, skin, mammary gland, uterus, ovary, testes and prostate). Since the expression of the majority of the isoforms appears to be very low in the extrahepatic tissues in comparison with predominant expression in adult liver, the role of the enzymes in overall biotransformation and total body clearance is minor. However, basal expression and up-regulation of extrahepatic CYP enzymes can significantly affect local disposition of xenobiotics or endogenous compounds in peripheral tissues and thus modify their pharmacological/toxicological effects or affect absorption of xenobiotics into systemic circulation. The goal of this review is to critically examine our current understanding of molecular mechanisms involved in induction of xenobiotic metabolizing CYP genes of human families CYP1, CYP2 and CYP3 by exogenous chemicals in extrahepatic tissues. We concentrate on organs such as the intestine, kidney, lung, placenta and skin, which are involved in drug distribution and clearance or are in direct contact with environmental xenobiotics. We also discuss single nucleotide polymorphisms (SNPs) of key CYPs, which at the level of transcription affect expression of the genes in the extrahepatic tissues or are associated with some pathophysiological stages or disorders in the organs.

323 citations


Authors

Showing all 32719 results

NameH-indexPapersCitations
Ronald C. Petersen1781091153067
P. Chang1702154151783
Vaclav Vrba141129895671
Milos Lokajicek139151198888
Christopher D. Manning138499147595
Yves Sirois137133495714
Rupert Leitner136120190597
Gerald M. Reaven13379980351
Roberto Sacchi132118689012
S. Errede132148198663
Mark Neubauer131125289004
Peter Kodys131126285267
Panos A Razis130128790704
Vit Vorobel13091979444
Jehad Mousa130122686564
Network Information
Related Institutions (5)
University of Milan
139.7K papers, 4.6M citations

90% related

Sapienza University of Rome
155.4K papers, 4.3M citations

90% related

University of Amsterdam
140.8K papers, 5.9M citations

89% related

University of Oxford
258.1K papers, 12.9M citations

89% related

Tel Aviv University
115.9K papers, 3.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023203
2022555
20214,841
20204,793
20194,421
20183,991