scispace - formally typeset
Search or ask a question
Institution

Charlie Norwood VA Medical Center

HealthcareAugusta, Georgia, United States
About: Charlie Norwood VA Medical Center is a healthcare organization based out in Augusta, Georgia, United States. It is known for research contribution in the topics: Autophagy & Kidney. The organization has 349 authors who have published 490 publications receiving 16360 citations. The organization is also known as: Augusta VA Medical Center.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability of SPRL-IPA-3 to induce cell death in a diverse panel of cells representing different stages of breast cancer, including the invasive but non-metastatic MCF-7 cells, and metastatic triple-negative breast cancer (TNBC) cells, is determined.
Abstract: P21 activated kinases (or group I PAKs) are serine/threonine kinases whose expression is altered in prostate and breast cancers. PAK-1 activity is inhibited by the small molecule "Inhibitor targeting PAK-1 activation-3" (IPA-3), which has selectivity for PAK-1 but is metabolically unstable. Secretory Group IIA phospholipase A2 (sPLA2) expression correlates to increased metastasis and decreased survival in many cancers. We previously designed novel liposomal formulations targeting both PAK-1 and sPLA2, called Secretory Phospholipase Responsive liposomes or SPRL-IPA-3, and demonstrated their ability to alter prostate cancer growth. The efficacy of SPRL against other types of cancers is not well understood. We addressed this limitation by determining the ability of SPRL to induce cell death in a diverse panel of cells representing different stages of breast cancer, including the invasive but non-metastatic MCF-7 cells, and metastatic triple-negative breast cancer (TNBC) cells such as MDA-MB-231, MDA-MB-468, and MDA-MB-435. We investigated the role of sPLA2 in the disposition of these liposomes by comparing the efficacy of SPRL-IPA-3 to IPA-3 encapsulated in sterically stabilized liposomes (SSL-IPA-3), a formulation shown to be less sensitive to sPLA2. Both SSL-IPA-3 and SPRL-IPA-3 induced time- and dose-dependent decreases in MTT staining in all cell lines tested, but SPRL-IPA-3-induced effects in metastatic TNBC cell lines were superior over SSL-IPA-3. The reduction in MTT staining induced by SPRL-IPA-3 correlated to the expression of Group IIA sPLA2. sPLA2 expression also correlated to increased induction of apoptosis in TNBC cell lines by SPRL-IPA-3. These data suggest that SPRL-IPA-3 is selective for metastatic TNBC cells and that the efficacy of SPRL-IPA-3 is mediated, in part, by the expression of Group IIA sPLA2.

5 citations

Book ChapterDOI
01 Jan 2009
TL;DR: Research during the last few years has established an important role for tubular cell apoptosis in ischemic as well as nephrotoxic AKI, which may lead to the development of novel therapeutic strategies for the prevention and treatment of AKI.
Abstract: Acute kidney injury (AKI), also called acute renal failure, is a major kidney disease associated with high mortality. Under the disease condition, renal tubular cells are reversibly or irreversibly injured, undergoing cell death in both forms of necrosis and apoptosis. Research during the last few years has established an important role for tubular cell apoptosis in ischemic as well as nephrotoxic AKI. The mechanisms underlying tubular cell apoptosis are being elucidated. Research in this area may lead to the development of novel therapeutic strategies for the prevention and treatment of AKI.

5 citations

Journal ArticleDOI
TL;DR: In this article, the authors employed RNA-sequencing analysis to profile serum exosomal long non-coding RNAs (lncRNAs) from non-small cell lung cancer (NSCLC) patients and pneumonia controls, and then determined the diagnostic and prognostic value of a promising lncRNA in four datasets.
Abstract: A non-invasive method to distinguish potential lung cancer patients would improve lung cancer prevention. We employed the RNA-sequencing analysis to profile serum exosomal long non-coding RNAs (lncRNAs) from non-small cell lung cancer (NSCLC) patients and pneumonia controls, and then determined the diagnostic and prognostic value of a promising lncRNA in four datasets. We identified 90 dysregulated lncRNAs for NSCLC and found the most significant lncRNA was a novel isoform of linc01125. Serum exosomal linc01125 could distinguish NSCLC cases from disease-free and tuberculosis controls, with the area under the curve values as 0.662 [95% confidence interval (CI) = 0.614-0.711] and 0.624 (95% CI = 0.522-0.725), respectively. High expression of exosomal linc01125 was also correlated with an unfavorable overall survival of NSCLC (hazard ratio = 1.48, 95% CI = 1.05-2.08). Clinic treatment decreased serum exosomal linc01125 in NSCLC patients (P = 0.036). Linc01125 functions to inhibit cancer growth and metastasis via acting as a competing endogenous RNA to up-regulate tumor necrosis factor alpha-induced protein 3 (TNFAIP3) expression by sponging miR-19b-3p. Notably, the oncogenic transformation of 16HBE led to decreased linc01125 in cells but increased linc01125 in cell-derived exosomes. The expression of linc01125 in total exosomes was highly correlated with that in tumor-associated exosomes in serum. Moreover, lung cancer cells were capable of releasing linc01125 into exosomes in vitro and in vivo. Our analyses suggest serum exosomal linc01125 as a promising biomarker for non-invasively diagnosing NSCLC and predicting the prognosis of NSCLC.

5 citations

Journal ArticleDOI
TL;DR: Understanding how colorectal CSC-intrinsic mechanisms cooperate with the extrinsic microenvironmental factors to dynamically shape colorective cancer stem cells resistance to chemotherapy and immunotherapy holds great promise for development of targeted CSC therapies of advanced human CRC.
Abstract: Colorectal cancer stem cells (CSCs) were initially considered to be a subset of undifferentiated tumor cells with well-defined phenotypic and molecular markers. However, emerging evidence indicates instead that colorectal CSCs are heterogeneous subsets of tumor cells that are continuously reshaped by the dynamic interactions between genetic, epigenetic, and immune factors in the tumor microenvironment. Thus, the colorectal CSC phenotypes and responsiveness to therapy may not only be a tumor cell-intrinsic feature but also depend on tumor-extrinsic microenvironmental factors. Furthermore, emerging evidence also implicates colorectal CSCs in potential immune evasion. Therefore, understanding how colorectal CSC-intrinsic mechanisms cooperate with the extrinsic microenvironmental factors to dynamically shape colorectal CSC resistance to chemotherapy and immunotherapy holds great promise for development of targeted CSC therapies of advanced human CRC.

5 citations

Journal ArticleDOI
TL;DR: A critical role for caspase-3 in intracellular mechanisms of acetylcholine-induced dispersal is reported in this issue of Developmental Cell.

5 citations


Authors

Showing all 353 results

NameH-indexPapersCitations
Zheng Dong7028324123
Lin Mei6924515903
Wen Cheng Xiong6419412171
Ruth B. Caldwell6021412314
Darrell W. Brann6018811066
Steven S. Coughlin5630312401
Martha K. Terris5537512346
Susan C. Fagan5317910135
Adviye Ergul481887678
Kebin Liu461287271
Maribeth H. Johnson451255189
Azza B. El-Remessy441235746
Yutao Liu431525657
William D. Hill411019870
Yuqing Huo411149815
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

89% related

Baylor College of Medicine
94.8K papers, 5M citations

89% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20226
202163
202050
201942
201846