scispace - formally typeset
Search or ask a question

Showing papers by "Chinese Academy of Sciences published in 2014"


Journal ArticleDOI
TL;DR: This review paper summarizes the current state-of-the-art IoT in industries systematically and identifies research trends and challenges.
Abstract: Internet of Things (IoT) has provided a promising opportunity to build powerful industrial systems and applications by leveraging the growing ubiquity of radio-frequency identification (RFID), and wireless, mobile, and sensor devices. A wide range of industrial IoT applications have been developed and deployed in recent years. In an effort to understand the development of IoT in industries, this paper reviews the current research of IoT, key enabling technologies, major IoT applications in industries, and identifies research trends and challenges. A main contribution of this review paper is that it summarizes the current state-of-the-art IoT in industries systematically.

4,145 citations



Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: The results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from fossil fuel combustion and biomass burning is likely to be important for controlling China’s PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Abstract: Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

3,372 citations


Journal ArticleDOI
TL;DR: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ and Hong Liu.
Abstract: Introduced to the Market in the Last Decade (2001−2011) Jiang Wang,† María Sańchez-Rosello,́‡,§ Jose ́ Luis Aceña, Carlos del Pozo,‡ Alexander E. Sorochinsky, Santos Fustero,*,‡,§ Vadim A. Soloshonok,* and Hong Liu*,† †Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China ‡Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicente Andreś Estelleś, 46100 Burjassot, Valencia, Spain Laboratorio de Molećulas Orgańicas, Centro de Investigacioń Príncipe Felipe, C/ Eduardo Primo Yuf́era 3, 46012 Valencia, Spain Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizab́al 3, 20018 San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 Plaza Bizkaia, 48011 Bilbao, Spain Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyiv-94, Ukraine

3,368 citations


Journal ArticleDOI
28 Nov 2014-Science
TL;DR: Diversity of most fungal groups peaked in tropical ecosystems, but ectomycorrhizal fungi and several fungal classes were most diverse in temperate or boreal ecosystems, and manyfungal groups exhibited distinct preferences for specific edaphic conditions (such as pH, calcium, or phosphorus).
Abstract: Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework.

2,346 citations


Journal ArticleDOI
TL;DR: The topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor offers excellent catalytic performance and durability under neutral and basic conditions.
Abstract: In this Communication, we report the topotactic fabrication of self-supported nanoporous cobalt phosphide nanowire arrays on carbon cloth (CoP/CC) via low-temperature phosphidation of the corresponding Co(OH)F/CC precursor. The CoP/CC, as a robust integrated 3D hydrogen-evolving cathode, shows a low onset overpotential of 38 mV and a small Tafel slope of 51 mV dec–1, and it maintains its catalytic activity for at least 80 000 s in acidic media. It needs overpotentials (η) of 67, 100, and 204 mV to attain current densities of 10, 20, and 100 mA cm–2, respectively. Additionally, this electrode offers excellent catalytic performance and durability under neutral and basic conditions.

2,063 citations


Journal ArticleDOI
06 Nov 2014-Nature
TL;DR: This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots.
Abstract: Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

1,958 citations


Journal ArticleDOI
21 Feb 2014-Science
TL;DR: In this article, 3D Dirac fermions with linear dispersions along all momentum directions were detected in 3D topological Dirac semimetals (TDSs) with angle-resolved photoemission spectroscopy.
Abstract: Three-dimensional (3D) topological Dirac semimetals (TDSs) represent an unusual state of quantum matter that can be viewed as “3D graphene.” In contrast to 2D Dirac fermions in graphene or on the surface of 3D topological insulators, TDSs possess 3D Dirac fermions in the bulk. By investigating the electronic structure of Na 3 Bi with angle-resolved photoemission spectroscopy, we detected 3D Dirac fermions with linear dispersions along all momentum directions. Furthermore, we demonstrated the robustness of 3D Dirac fermions in Na 3 Bi against in situ surface doping. Our results establish Na 3 Bi as a model system for 3D TDSs, which can serve as an ideal platform for the systematic study of quantum phase transitions between rich topological quantum states.

1,920 citations


Journal ArticleDOI
TL;DR: In this paper, the impact of plant morphology, hydration rate and chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution is investigated.
Abstract: The continental bio-cycling of silicon (Si) plays a key role in global Si cycle and as such partly controls global carbon (C) budget through nutrition of marine and terrestrial biota, accumulation of phytolith-occluded organic carbon (PhytOC) and weathering of silicate minerals. Despite the key role of elemental composition of phytoliths on their solubility in soils, the impact of plant cultivar and organ on the elemental composition of phytoliths in Si high-accumulator plants, such as rice (Oryza sativa) is not yet fully understood. Here we show that rice cultivar significantly impacts the elemental composition of phytoliths (Si, Al, Fe and C) in different organs of the shoot system (grains, sheath, leaf and stem). The amount of occluded OC within phytoliths is affected by contents of Si, Al and Fe in plants, while independent of the element composition of phytoliths. Our data document, for different cultivars, higher bio-available Si release from phytoliths of leaves and sheaths, which are characterized by higher enrichment with Al and Fe (i.e., lower Si/Al and Si/Fe ratios), compared to grains and stems. We indicate that phytolith solubility in soils may be controlled by rice cultivar and type of organs. Our results highlight that the role of the morphology, the hydration rate and the chemical composition in the solubility of phytoliths and the kinetic release of Si in soil solution needs to be studied further. This is central to a better understanding of the impact of soil amendment with different plant organs and cultivars on soil OC stock and on the delivery of dissolved Si as we show that sheath and leaf rice organs are both characterized by higher content of OC occluded in phytolith and higher phytolith solubility compared to grains and stems. Our study shows the importance of studying the impact of the agro-management on the evolution of sinks and sources of Si and C in soils used for Si-high accumulator plants.

1,902 citations


Proceedings ArticleDOI
24 Feb 2014
TL;DR: This study designs an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance and energy, and shows that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s in a small footprint.
Abstract: Machine-Learning tasks are becoming pervasive in a broad range of domains, and in a broad range of systems (from embedded systems to data centers). At the same time, a small set of machine-learning algorithms (especially Convolutional and Deep Neural Networks, i.e., CNNs and DNNs) are proving to be state-of-the-art across many applications. As architectures evolve towards heterogeneous multi-cores composed of a mix of cores and accelerators, a machine-learning accelerator can achieve the rare combination of efficiency (due to the small number of target algorithms) and broad application scope. Until now, most machine-learning accelerator designs have focused on efficiently implementing the computational part of the algorithms. However, recent state-of-the-art CNNs and DNNs are characterized by their large size. In this study, we design an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance and energy. We show that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s (key NN operations such as synaptic weight multiplications and neurons outputs additions) in a small footprint of 3.02 mm2 and 485 mW; compared to a 128-bit 2GHz SIMD processor, the accelerator is 117.87x faster, and it can reduce the total energy by 21.08x. The accelerator characteristics are obtained after layout at 65 nm. Such a high throughput in a small footprint can open up the usage of state-of-the-art machine-learning algorithms in a broad set of systems and for a broad set of applications.

1,582 citations


Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: It is shown that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS, which represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.
Abstract: The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.

Journal ArticleDOI
TL;DR: In this paper, two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyl transferase like 14 (METTL14), were reported.
Abstract: The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.


Proceedings Article
Daojian Zeng1, Kang Liu1, Siwei Lai1, Guangyou Zhou1, Jun Zhao1 
01 Aug 2014
TL;DR: This paper exploits a convolutional deep neural network (DNN) to extract lexical and sentence level features from the output of pre-existing natural language processing systems and significantly outperforms the state-of-the-art methods.
Abstract: The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NLP) systems, which leads to the propagation of the errors in the existing tools and hinders the performance of these systems. In this paper, we exploit a convolutional deep neural network (DNN) to extract lexical and sentence level features. Our method takes all of the word tokens as input without complicated pre-processing. First, the word tokens are transformed to vectors by looking up word embeddings 1 . Then, lexical level features are extracted according to the given nouns. Meanwhile, sentence level features are learned using a convolutional approach. These two level features are concatenated to form the final extracted feature vector. Finally, the features are fed into a softmax classifier to predict the relationship between two marked nouns. The experimental results demonstrate that our approach significantly outperforms the state-of-the-art methods.

Journal ArticleDOI
TL;DR: It is shown that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew, and provides a methodological framework to improve polyploid crops.
Abstract: Sequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins. Genetic redundancy has prevented evaluation of whether mutation of all three MLO alleles in bread wheat might confer resistance to powdery mildew, a trait not found in natural populations. We show that TALEN-induced mutation of all three TaMLO homoeologs in the same plant confers heritable broad-spectrum resistance to powdery mildew. We further use CRISPR-Cas9 technology to generate transgenic wheat plants that carry mutations in the TaMLO-A1 allele. We also demonstrate the feasibility of engineering targeted DNA insertion in bread wheat through nonhomologous end joining of the double-strand breaks caused by TALENs. Our findings provide a methodological framework to improve polyploid crops.

Proceedings ArticleDOI
13 Dec 2014
TL;DR: This article introduces a custom multi-chip machine-learning architecture, showing that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system.
Abstract: Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.

Journal ArticleDOI
TL;DR: In this paper, the authors estimate the radius to the Galactic center, R-0, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, Theta(0), to be 240 +/- 8 km s(-1), and a rotation curve that is nearly flat.
Abstract: Over 100 trigonometric parallaxes and proper motions for masers associated with young, high- mass stars have been measured with the Bar and Spiral Structure Legacy Survey, a Very Long Baseline Array key science project, the European VLBI Network, and the Japanese VLBI Exploration of Radio Astrometry project. These measurements provide strong evidence for the existence of spiral arms in the MilkyWay, accurately locating many arm segments and yielding spiral pitch angles ranging from about 7 degrees to 20 degrees. The widths of spiral arms increase with distance from the Galactic center. Fitting axially symmetric models of the MilkyWay with the three- dimensional position and velocity information and conservative priors for the solar and average source peculiar motions, we estimate the distance to the Galactic center, R-0, to be 8.34 +/- 0.16 kpc, a circular rotation speed at the Sun, Theta(0), to be 240 +/- 8 km s(-1), and a rotation curve that is nearly flat ( i. e., a slope of -0.2 +/- 0.4 km s(-1) kpc(-1)) between Galactocentric radii of approximate to 5 and 16 kpc. Assuming a " universal" spiral galaxy form for the rotation curve, we estimate the thin disk scale length to be 2.44 +/- 0.16 kpc. With this large data set, the parameters R-0 and Theta(0) are no longer highly correlated and are relatively insensitive to different forms of the rotation curve. If one adopts a theoretically motivated prior that high- mass star forming regions are in nearly circular Galactic orbits, we estimate a global solar motion component in the direction of Galactic rotation, V-circle dot = 14.6 +/- 5.0 km s(-1). While Theta(0) and V-circle dot are significantly correlated, the sum of these parameters is well constrained, Theta(0) + V circle dot = 255.2 +/- 5.1 km s(-1), as is the angular speed of the Sun in its orbit about the Galactic center, ( Theta(0) + V-circle dot)/R-0 = 30.57 +/- 0.43 km s(-1) kpc(-1). These parameters improve the accuracy of estimates of the accelerations of the Sun and the Hulse-Taylor binary pulsar in their Galactic orbits, significantly reducing the uncertainty in tests of gravitational radiation predicted by general relativity.

Journal ArticleDOI
12 Dec 2014-Science
TL;DR: The preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200.
Abstract: Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets.

Journal ArticleDOI
TL;DR: It is shown that climate change is likely to exacerbate regional and global water scarcity considerably and GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
Abstract: Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.

Journal ArticleDOI
TL;DR: An overview of the recent advances of ZVI and progress obtained during the groundwater remediation and wastewater treatment utilizing ZVI (including nanoscale zero-valent iron (nZVI)) for the removal of contaminants.

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the recent research progress of flexible lithium-ion batteries, with special emphasis on electrode material selectivity and battery structural design, and discussed the prospects and challenges toward the practical uses of flexible batteries in electronic devices.
Abstract: With the advent of flexible electronics, flexible lithium-ion batteries have attracted great attention as a promising power source in the emerging field of flexible and wearable electronic devices such as roll-up displays, touch screens, conformable active radio-frequency identification tags, wearable sensors and implantable medical devices. In this review, we summarize the recent research progress of flexible lithium-ion batteries, with special emphasis on electrode material selectivity and battery structural design. We begin with a brief introduction of flexible lithium-ion batteries and the current development of flexible solid-state electrolytes for applications in this field. This is followed by a detailed overview of the recent progress on flexible electrode materials based on carbon nanotubes, graphene, carbon cloth, conductive paper (cellulose), textiles and some other low-dimensional nanostructured materials. Then recently proposed prototypes of flexible cable/wire type, transparent and stretchable lithium-ion batteries are highlighted. The latest advances in the exploration of other flexible battery systems such as lithium–sulfur, Zn–C (MnO2) and sodium-ion batteries, as well as related electrode materials are included. Finally, the prospects and challenges toward the practical uses of flexible lithium-ion batteries in electronic devices are discussed.

Journal ArticleDOI
TL;DR: In this article, the authors classified the hot accretion flows into two broad classes: cold and hot, and showed that hot flows are associated with jets and strong winds, and that they are present in low-luminosity active galactic nuclei and in black hole X-ray binaries in the hard and quiescent states.
Abstract: Black hole accretion flows can be divided into two broad classes: cold and hot. Whereas cold accretion flows consist of cool optically thick gas and are found at relatively high mass accretion rates, hot accretion flows, the topic of this review, are virially hot and optically thin, and occur at lower mass accretion rates. They are described by accretion solutions such as the advection-dominated accretion flow and luminous hot accretion flow. Because of energy advection, the radiative efficiency of these flows is in general lower than that of a standard thin accretion disk. Moreover, the efficiency decreases with decreasing mass accretion rate. Observations show that hot accretion flows are associated with jets. In addition, theoretical arguments suggest that hot flows should produce strong winds. Hot accretion flows are believed to be present in low-luminosity active galactic nuclei and in black hole X-ray binaries in the hard and quiescent states. The prototype is Sgr A*, the ultralow-luminosity supermassive black hole at our Galactic center. The jet, wind, and radiation from a supermassive black hole with a hot accretion flow can interact with the external interstellar medium and modify the evolution of the host galaxy.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper examined the spatiotemporal characteristics, differences, and causes of land-use changes at a national scale and found that the built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China.
Abstract: Land-use/land-cover changes (LUCCs) have links to both human and nature inter- actions. China's Land-Use/cover Datasets (CLUDs) were updated regularly at 5-year inter- vals from the late 1980s to 2010, with standard procedures based on Landsat TM\ETM+ im- ages. A land-use dynamic regionalization method was proposed to analyze major land-use conversions. The spatiotemporal characteristics, differences, and causes of land-use changes at a national scale were then examined. The main findings are summarized as fol- lows. Land-use changes (LUCs) across China indicated a significant variation in spatial and temporal characteristics in the last 20 years (1990-2010). The area of cropland change de- creased in the south and increased in the north, but the total area remained almost un- changed. The reclaimed cropland was shifted from the northeast to the northwest. The built-up lands expanded rapidly, were mainly distributed in the east, and gradually spread out to central and western China. Woodland decreased first, and then increased, but desert area was the opposite. Grassland continued decreasing. Different spatial patterns of LUC in China were found between the late 20th century and the early 21st century. The original 13 LUC zones were replaced by 15 units with changes of boundaries in some zones. The main spatial characteristics of these changes included (1) an accelerated expansion of built-up land in the

Journal ArticleDOI
TL;DR: In this paper, it was shown that Cd3As2 is an experimental realization of a 3D Dirac semimetal that is stable at ambient conditions, using angle-resolved photoelectron spectroscopy.
Abstract: A state of matter known as a three-dimensional Dirac semimetal has latterly garnered significant theoretical and experimental attention. Using angle-resolved photoelectron spectroscopy, it is shown that Cd3As2 is an experimental realization of a three-dimensional Dirac semimetal that is stable at ambient conditions.

Journal ArticleDOI
23 Oct 2014-Nature
TL;DR: If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.
Abstract: In an experiment across China to test integrated soil–crop system management for rice, wheat and maize against current practice, improvements in grain yield are equivalent to high-input techniques, but nutrient use, nutrient loss and greenhouse gas emissions are lower than current practice. Integrated soil–crop system management is a technique that aims to maximize yield and minimize environmental impact by adapting cropping systems to local conditions through optimal nutrient application, seasonal timing and the use of the best crop varieties. Fusuo Zhang and colleagues report the results of a China-wide test of this technique for the three main cereal crops — rice, wheat and maize. In comparisons with current practice and high input techniques, the authors find that the integrated system achieves yield improvements equivalent to high input techniques but with lower nutrient use, nutrient loss and greenhouse gas emissions than those found with the current practice. Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs1,2. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil–crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha−1), 7.2 Mg ha−1 and 10.5 Mg ha−1 to 8.5 Mg ha−1, 8.9 Mg ha−1 and 14.2 Mg ha−1, respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment3 show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil–crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.

Journal ArticleDOI
TL;DR: Synthesis, Luminescent Properties, and Biomedical Applications Shili Gai,‡ Chunxia Li,† Piaoping Yang,*,‡ and Jun Lin*,† † state Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences.
Abstract: Synthesis, Luminescent Properties, and Biomedical Applications Shili Gai,†,‡ Chunxia Li,† Piaoping Yang,*,‡ and Jun Lin*,† †State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China ‡Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin, 150001, P. R. China

Journal ArticleDOI
Xuewen Wang1, Yang Gu1, Xiong Zuoping1, Zheng Cui1, Ting Zhang1 
TL;DR: The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications.
Abstract: Flexible and transparent E-skin devices are achieved by combining silk-molded micro-patterned polydimethylsiloxane (PDMS) with single-walled carbon nanotube (SWNT) ultrathin films. The E-skin sensing device demonstrates superior sensitivity, a very low detectable pressure limit, a fast response time, and a high stability for the detection of superslight pressures, which may broaden their potential use as cost-effective wearable electronics for healthcare applications.

Journal ArticleDOI
TL;DR: The 10th public data release (DR10) from the Sloan Digital Sky Survey (SDSS-III) was released in 2013 as mentioned in this paper, which includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopy data from Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July.
Abstract: The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ~ 22,500 300 fiber spectrograph covering 1.514-1.696 μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the Milky Way. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg2.

Journal ArticleDOI
TL;DR: This review focuses on the major obstacle of sluggish kinetics of the cathode in both batteries, and summary the fundamentals and recent advances related to the oxygen catalyst materials, and several future research directions are proposed based on the results achieved.
Abstract: With the development of renewable energy and electrified transportation, electrochemical energy storage will be more important in the future than it has ever been in the past. Although lithium-ion batteries (LIBs) are traditionally considered to be the most likeliest candidate thanks to their relatively long cycle life and high energy efficiency, their limited energy density as well as cost are still causing a bottleneck for their long-term application. Alternatively, metal–air batteries have been proposed as a very promising large-scale electricity storage technology with the replacement of the intercalation reaction mechanism by the catalytic redox reaction of a light weight metal–oxygen couple. Generally, based on the electrolyte, these metal–air batteries can be divided into aqueous and nonaqueous systems, corresponding to two typical batteries of Zn–air and Li–air, respectively. The prominent feature of both batteries are their extremely high theoretical energy density, especially for nonaqueous Li–air batteries, which far exceeds the best that can be achieved with LIBs. In this review, we focus on the major obstacle of sluggish kinetics of the cathode in both batteries, and summarize the fundamentals and recent advances related to the oxygen catalyst materials. According to the electrolyte, the aqueous and nonaqueous electrocatalytic mechanisms of the oxygen reduction and evolution reactions are discussed. Subsequently, seven groups of oxygen catalysts, which have played catalytic roles in both systems, are selectively reviewed, including transition metal oxides (single-metal oxides and mixed-metal oxides), functional carbon materials (nanostructured carbons and doped carbons), metal oxide–nanocarbon hybrid materials, metal–nitrogen complexes (non-pyrolyzed and pyrolyzed), transition metal nitrides, conductive polymers, and precious metals (alloys). Nonaqueous systems have the advantages of energy density and rechargeability over aqueous systems and have gradually become the research focus of metal–air batteries. However, there are considerable challenges beyond catalysts from aqueous to nonaqueous electrolytes, which are also discussed in this review. Finally, several future research directions are proposed based on the results achieved in this field, with emphasis on nonaqueous Li–air batteries.

Journal ArticleDOI
TL;DR: This review covers state-of-the-art accomplishments in visible-light-induced selective organic transformations by heterogeneous photocatalysis and discusses three sections based on the photocatalyst type: metal oxides such as TiO2, Nb2O5 and ZnO; plasmonic photocatalysts like nanostructured Au, Ag or Cu supported on metal oxide; and polymeric graphitic carbon nitride.
Abstract: The future development of chemistry entails environmentally friendly and energy sustainable alternatives for organic transformations. Visible light photocatalysis can address these challenges, as reflected by recent intensive scientific endeavours to this end. This review covers state-of-the-art accomplishments in visible-light-induced selective organic transformations by heterogeneous photocatalysis. The discussion comprises three sections based on the photocatalyst type: metal oxides such as TiO2, Nb2O5 and ZnO; plasmonic photocatalysts like nanostructured Au, Ag or Cu supported on metal oxides; and polymeric graphitic carbon nitride. Finally, recent strides in bridging the gap between photocatalysis and other areas of catalysis will be highlighted with the aim of overcoming the existing limitations of photocatalysis by developing more creative synthetic methodologies.