scispace - formally typeset
Search or ask a question
Institution

Chinese Center for Disease Control and Prevention

GovernmentBeijing, China
About: Chinese Center for Disease Control and Prevention is a government organization based out in Beijing, China. It is known for research contribution in the topics: Population & Acquired immunodeficiency syndrome (AIDS). The organization has 16037 authors who have published 15098 publications receiving 423452 citations. The organization is also known as: China CDC & CCDC.


Papers
More filters
Journal ArticleDOI
TL;DR: Significantly higher concentrations and detection frequencies of NNIs were observed in the summer than in the spring, which may be explained by the heavier precipitation in summer.

87 citations

Posted ContentDOI
11 Feb 2020-medRxiv
TL;DR: By combining epidemiological and human mobility data, it is found that the travel ban slowed the dispersal of 2019-nCoV from Wuhan to other cities in China by 2.91 days, providing extra time to establish and reinforce other control measures that are essential to halt the epidemic.
Abstract: An ongoing outbreak of a novel coronavirus (2019-nCoV) was first reported in China in December 2019 and has spread to other countries. On January 23rd 2020 China shut down transit in and out of Wuhan city, a major transport hub and conurbation of 11 million inhabitants, to contain the outbreak. By combining epidemiological and human mobility data we find that the travel ban slowed the dispersal of 2019-nCoV from Wuhan to other cities in China by 2.91 days (95% CI: 2.54-3.29). This delay provided extra time to establish and reinforce other control measures that are essential to halt the epidemic. The ongoing diffusion of 2019-nCoV provides an opportunity to examine how travel restrictions impede the spatial dispersal of an emerging infectious disease. One Sentence Summary The Wuhan city travel shutdown delayed the dispersal of 2019-nCoV infection to other cities in China

87 citations

Journal ArticleDOI
07 May 2009-PLOS ONE
TL;DR: In this paper, two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFfluIggG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus.
Abstract: Background: The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development. Methodology/Principal Findings: We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model. Conclusions/Significance: Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines.

87 citations

Posted ContentDOI
10 Mar 2020-medRxiv
TL;DR: A novel low-cost and accurate method to estimate the incubation distribution of coronavirus disease 2019, where about 10% of patients with COVID-19 would not develop symptoms until 14 days after infection.
Abstract: Summary Background The current outbreak of coronavirus disease 2019 (COVID-19) has quickly spread across countries and become a global crisis. However, one of the most important clinical characteristics in epidemiology, the distribution of the incubation period, remains unclear. Different estimates of the incubation period of COVID-19 were reported in recent published studies, but all have their own limitations. In this study, we propose a novel low-cost and accurate method to estimate the incubation distribution. Methods We have conducted a cross-sectional and forward follow-up study by identifying those asymptomatic individuals at their time of departure from Wuhan and then following them until their symptoms developed. The renewal process is hence adopted by considering the incubation period as a renewal and the duration between departure and symptom onset as a forward recurrence time. Under mild assumptions, the observations of selected forward times can be used to consistently estimate the parameters in the distribution of the incubation period. Such a method enhances the accuracy of estimation by reducing recall bias and utilizing the abundant and readily available forward time data. Findings The estimated distribution of forward time fits the observations in the collected data well. The estimated median of incubation period is 8·13 days (95% confidence interval [CI]: 7·37-8·91), the mean is 8·62 days (95% CI: 8·02-9·28), the 90th percentile is 14·65 days (95% CI: 14·00-15·26), and the 99th percentile is 20·59 days (95% CI: 19·47, 21·62). Compared with results in other studies, the incubation period estimated in this study is longer. Interpretation Based on the estimated incubation distribution in this study, about 10% of patients with COVID-19 would not develop symptoms until 14 days after infection. Further study of the incubation distribution is warranted to directly estimate the proportion with long incubation periods. Funding This research is supported by National Natural Science Foundation of China grant 8204100362 and Zhejiang University special scientific research fund for COVID-19 prevention and control. Research in context Evidence before this study Before the current outbreak of coronavirus disease (COVID-19) in China, there were two other coronaviruses that have caused major global epidemics over the last two decades. Severe acute respiratory syndrome (SARS) spread to 37 countries and caused 8424 cases and 919 deaths in 2002-03, while Middle East respiratory syndrome (MERS) spread to 27 countries, causing 2494 cases and 858 deaths worldwide to date. Precise knowledge of the incubation period is crucial for the prevention and control of these diseases. We have searched PubMed and preprint archives for articles published as of February 22, 2020, which contain information about these diseases by using the key words of “COVID-19”, “SARS”, “MERS”, “2019-nCoV”, “coronavirus”, and “incubation”. We have found 15 studies that estimated the distribution of the incubation period. There are four articles focused on COVID-19, five on MERS, and six on SARS. Most of these studies had limited sample sizes and were potentially influenced by recall bias. The estimates for mean, median, and percentiles of the incubation period from these articles are summarized in Table 1. Added value of this study In the absence of complete and robust contact-tracing data, we have inferred the distribution of the incubation period of COVID-19 from the durations between departure from Wuhan and symptom onset for the confirmed cases. More than 1000 cases were collected from publicly available data. The proposed approach has a solid theoretical foundation and enhances the accuracy of estimation by reducing recall bias and utilizing a large pool of samples. Implications of all the available evidence Based on our model, about 10% of patients with COVID-19 do not develop symptoms until 14 days after infection. Further study of individuals with long incubation periods is warranted.

87 citations


Authors

Showing all 16076 results

NameH-indexPapersCitations
Richard Peto183683231434
Barry M. Popkin15775190453
Jian Yang1421818111166
Edward C. Holmes13882485748
Jian Li133286387131
Shaobin Wang12687252463
Elaine Holmes11956058975
Jian Liu117209073156
Sherif R. Zaki10741740081
Jun Yang107209055257
Nan Lin10568754545
Li Chen105173255996
Ming Li103166962672
George F. Gao10279382219
Tao Li102248360947
Network Information
Related Institutions (5)
Centers for Disease Control and Prevention
82.5K papers, 4.4M citations

93% related

Peking Union Medical College
61.8K papers, 1.1M citations

89% related

Nanjing Medical University
37.9K papers, 635.8K citations

88% related

Capital Medical University
47.2K papers, 811.2K citations

86% related

Peking University
181K papers, 4.1M citations

86% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202283
20211,490
20201,678
20191,244
20181,041