scispace - formally typeset
Search or ask a question

Showing papers by "Chinese PLA General Hospital published in 2017"


Journal ArticleDOI
TL;DR: A metagenome-wide association study on stools from individuals with atherosclerotic cardiovascular disease and healthy controls is performed, identifying microbial strains and functions associated with the disease.
Abstract: The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases. The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform a metagenome-wide association study on stools from individuals with atherosclerotic cardiovascular disease and healthy controls, identifying microbial strains and functions associated with the disease.

887 citations


Journal ArticleDOI
14 Aug 2017
TL;DR: It is shown that patients with primary malignant brain tumors have a devastating outcome and overall reduced survival when Nrf2 levels are upregulated and NRF2 presents the Achilles’ heel of cancer cells and thus provides a valid therapeutic target for sensitizing cancer for chemotherapeutics.
Abstract: Cancer cells are hallmarked by high proliferation and imbalanced redox consumption and signaling. Various oncogenic pathways such as proliferation and evading cell death converge on redox-dependent signaling processes. Nrf2 is a key regulator in these redox-dependent events and operates in cytoprotection, drug metabolism and malignant progression in cancer cells. Here, we show that patients with primary malignant brain tumors (glioblastomas, WHO °IV gliomas, GBM) have a devastating outcome and overall reduced survival when Nrf2 levels are upregulated. Nrf2 overexpression or Keap1 knockdown in glioma cells accelerate proliferation and oncogenic transformation. Further, activation of the Nrf2-Keap1 signaling upregulates xCT (aka SLC7A11 or system Xc−) and amplifies glutamate secretion thereby impacting on the tumor microenvironment. Moreover, both fostered Nrf2 expression and conversely Keap1 inhibition promote resistance to ferroptosis. Altogether, the Nrf2-Keap1 pathway operates as a switch for malignancy in gliomas promoting cell proliferation and resistance to cell death processes such as ferroptosis. Our data demonstrate that the Nrf2-Keap1 pathway is critical for cancer cell growth and operates on xCT. Nrf2 presents the Achilles’ heel of cancer cells and thus provides a valid therapeutic target for sensitizing cancer for chemotherapeutics.

376 citations


Journal ArticleDOI
TL;DR: The effect of the biological activity of biological materials on the improved properties in detail is discussed, because this effect overcomes the limited bioavailability and restricted morphology of materials generally encountered in traditional flexible electronic devices.
Abstract: Biological materials have robust hierarchical structures capable of specialized functions and the incorporation of natural biologically active components, which have been finely tuned through millions of years of evolution. These highly efficient architectural designs afford remarkable transport and mechanical properties, which render them attractive candidates for flexible electronic sensing technologies. This review provides a comprehensive overview of the fundamental aspects and applications of biological materials for flexible electronic devices and discusses various classes of biological materials by describing their unique structures and functions. We discuss the effect of the biological activity of biological materials on the improved properties in detail, because this effect overcomes the limited bioavailability and restricted morphology of materials generally encountered in traditional flexible electronic devices. We also summarize various approaches for the design and functionalization of natural materials and their applications in flexible electronic devices for use in biomedical, electron, energy, environmental and optical fields. Finally, we provide new insights and perspectives to further describe trends for future generations of biological materials, which are likely to be critical components (building blocks or elements) in future flexible electronics.

303 citations



Journal ArticleDOI
TL;DR: It is confirmed that melatonin protects cardiac microvasculature against IRI and the underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission‐VDAC1‐HK2‐mPTP‐mitophagy axis via activation of AMPKα.
Abstract: The cardiac microvascular system, which is primarily composed of monolayer endothelial cells, is the site of blood supply and nutrient exchange to cardiomyocytes. However, microvascular ischemia/reperfusion injury (IRI) following percutaneous coronary intervention is a woefully neglected topic, and few strategies are available to reverse such pathologies. Here, we studied the effects of melatonin on microcirculation IRI and elucidated the underlying mechanism. Melatonin markedly reduced infarcted area, improved cardiac function, restored blood flow, and lower microcirculation perfusion defects. Histological analysis showed that cardiac microcirculation endothelial cells (CMEC) in melatonin-treated mice had an unbroken endothelial barrier, increased endothelial nitric oxide synthase expression, unobstructed lumen, reduced inflammatory cell infiltration, and less endothelial damage. In contrast, AMP-activated protein kinase α (AMPKα) deficiency abolished the beneficial effects of melatonin on microvasculature. In vitro, IRI activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, which subsequently induced voltage-dependent anion channel 1 (VDAC1) oligomerization, hexokinase 2 (HK2) liberation, mitochondrial permeability transition pore (mPTP) opening, PINK1/Parkin upregulation, and ultimately mitophagy-mediated CMEC death. However, melatonin strengthened CMEC survival via activation of AMPKα, followed by p-Drp1S616 downregulation and p-Drp1S37 upregulation, which blunted Drp1-dependent mitochondrial fission. Suppression of mitochondrial fission by melatonin recovered VDAC1-HK2 interaction that prevented mPTP opening and PINK1/Parkin activation, eventually blocking mitophagy-mediated cellular death. In summary, this study confirmed that melatonin protects cardiac microvasculature against IRI. The underlying mechanism may be attributed to the inhibitory effects of melatonin on mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis via activation of AMPKα.

279 citations


Journal ArticleDOI
TL;DR: Some of the mechanisms for antigen loss relapse and new strategies to address this issue are characterized and some novel CAR designs that are being considered are discussed to enhance the safety of CAR-T cell therapy in solid tumors are discussed.
Abstract: Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

273 citations


Journal ArticleDOI
TL;DR: By analysing 60 clinical samples' RNA-seq data from 20 HCC patients, 8,603 candidate lncRNAs are identified and characterized and further validated using RNAi-based loss-of-function assays provide a valuable resource of functional lnc RNAs and biomarkers associated with HCC tumorigenesis and metastasis.
Abstract: Hepatocellular carcinoma (HCC) cells often invade the portal venous system and subsequently develop into portal vein tumour thrombosis (PVTT). Long noncoding RNAs (lncRNAs) have been associated with HCC, but a comprehensive analysis of their specific association with HCC metastasis has not been conducted. Here, by analysing 60 clinical samples' RNA-seq data from 20 HCC patients, we have identified and characterized 8,603 candidate lncRNAs. The expression patterns of 917 recurrently deregulated lncRNAs are correlated with clinical data in a TCGA cohort and published liver cancer data. Matched array data from the 60 samples show that copy number variations (CNVs) and alterations in DNA methylation contribute to the observed recurrent deregulation of 235 lncRNAs. Many recurrently deregulated lncRNAs are enriched in co-expressed clusters of genes related to cell adhesion, immune response and metabolic processes. Candidate lncRNAs related to metastasis, such as HAND2-AS1, were further validated using RNAi-based loss-of-function assays. Thus, we provide a valuable resource of functional lncRNAs and biomarkers associated with HCC tumorigenesis and metastasis.

262 citations


Journal ArticleDOI
TL;DR: CART-30 cell therapy was safe, feasible, and efficient in relapsed or refractory lymphoma and guarantees a large-scale patient recruitment.
Abstract: Purpose: Relapsed or refractory Hodgkin lymphoma is a challenge for medical oncologists because of poor overall survival. We aimed to assess the feasibility, safety, and efficacy of CD30-targeting CAR T cells in patients with progressive relapsed or refractory Hodgkin lymphoma.Experimental Design: Patients with relapsed or refractory Hodgkin lymphoma received a conditioning chemotherapy followed by the CART-30 cell infusion. The level of CAR transgenes in peripheral blood and biopsied tumor tissues was measured periodically according to an assigned protocol by quantitative PCR (qPCR).Results: Eighteen patients were enrolled; most of whom had a heavy treatment history or multiple tumor lesions and received a mean of 1.56 × 107 CAR-positive T cell per kg (SD, 0.25; range, 1.1-2.1) in total during infusion. CART-30 cell infusion was tolerated, with grade ≥3 toxicities occurring only in two of 18 patients. Of 18 patients, seven achieved partial remission and six achieved stable disease. An inconsistent response of lymphoma was observed: lymph nodes presented a better response than extranodal lesions and the response of lung lesions seemed to be relatively poor. Lymphocyte recovery accompanied by an increase of circulating CAR T cells (peaking between 3 and 9 days after infusion) is a probable indictor of clinical response. Analysis of biopsied tissues by qPCR and immunohistochemistry revealed the trafficking of CAR T cells into the targeted sites and reduction of the expression of CD30 in tumors.Conclusions: CART-30 cell therapy was safe, feasible, and efficient in relapsed or refractory lymphoma and guarantees a large-scale patient recruitment. Clin Cancer Res; 23(5); 1156-66. ©2016 AACR.

248 citations


Journal ArticleDOI
TL;DR: Evidence clearly illustrates that microcirculatory ischemia/reperfusion injury can be attributed to Mff‐dependent mitochondrial fission via voltage‐dependent anion channel 1/hexokinase 2–mediated mitochondrial permeability transition pore opening and mitochondrial reactive oxygen species/cardiolipin involved cyt‐c release.
Abstract: BackgroundThe cardiac microvascular system ischemia/reperfusion injury following percutaneous coronary intervention is a clinical thorny problem. This study explores the mechanisms by which ischemi...

235 citations


Journal ArticleDOI
TL;DR: This study confirms the promotive effect of Ripk3 on mitochondria-mediated apoptosis via inhibition of FUNDC1-dependent mitophagy in cardiac IRI.
Abstract: Ripk3-required necroptosis and mitochondria-mediated apoptosis are the predominant types of cell death that largely account for the development of cardiac ischemia reperfusion injury (IRI). Here, we explored the effect of Ripk3 on mitochondrial apoptosis. Compared with wild-type mice, the infarcted area in Ripk3-deficient (Ripk3-/-) mice had a relatively low abundance of apoptotic cells. Moreover, the loss of Ripk3 protected the mitochondria against IRI and inhibited caspase9 apoptotic pathways. These protective effects of Ripk3 deficiency were relied on mitophagy activation. However, inhibition of mitophagy under Ripk3 deficiency enhanced cardiomyocyte and endothelia apoptosis, augmented infarcted area and induced microvascular dysfunction. Furthermore, ischemia activated mitophagy by modifying FUNDC1 dephosphorylation, which substantively engulfed mitochondria debris and cytochrome-c, thus blocking apoptosis signal. However, reperfusion injury elevated the expression of Ripk3 which disrupted FUNDC1 activation and abated mitophagy, increasing the likelihood of apoptosis. In summary, this study confirms the promotive effect of Ripk3 on mitochondria-mediated apoptosis via inhibition of FUNDC1-dependent mitophagy in cardiac IRI. These findings provide new insight into the roles of Ripk3-related necroptosis, mitochondria-mediated apoptosis and FUNDC1-required mitophagy in cardiac IRI.

233 citations


Journal ArticleDOI
TL;DR: The combination of GMSC-derived exosomes and hydrogel could effectively promote skin wound healing in diabetic rats by promoting the re-epithelialization, deposition and remodeling of collagen and by enhancing angiogenesis and neuronal ingrowth.
Abstract: Background: Delayed wound healing in diabetic patients is one of the most challenging complications in clinical medicine, as it poses a greater risk of gangrene, amputation and even death. Therefore, a novel method to promote diabetic wound healing is of considerable interest at present. Previous studies showed that injection of MSC-derived exosomes has beneficial effects on wound healing. In current studies, we aimed to isolate exosomes derived from gingival mesenchymal stem cells (GMSCs) and then loading them to the chitosan/silk hydrogel sponge to evaluate the effects of this novel non-invasive method on skin defects in diabetic rats. Methods: GMSCs were isolated from human gingival connective tissue and characterized by surface antigen analysis and in vitro multipotent differentiation. The cell supernatant was collected to isolate the exosomes. The exosomes were characterized by transmission electron microscopy, Western blot and size distribution analysis. The chitosan/silk-based hydrogel sponge was prepared using the freeze-drying method and then structural and physical properties were characterized. Then, the exosomes were added to the hydrogel and tested in a diabetic rat skin defect model. The effects were evaluated by wound area measurement, histological, immunohistochemical and immunofluorescence analysis. Results: We have successfully isolated GMSCs and exosomes with a mean diameter of 127 nm. The chitosan/silk hydrogel had the appropriate properties of swelling and moisture retention capacity. The in vivo studies showed that the incorporating of GMSC-derived exosomes to hydrogel could effectively promote healing of diabetic skin defects. The histological analysis revealed more neo-epithelium and collagen in the hydrogel-exosome group. In addition, the hydrogel-exosome group had the highest microvessel density and nerve density. Conclusions: The combination of GMSC-derived exosomes and hydrogel could effectively promote skin wound healing in diabetic rats by promoting the re-epithelialization, deposition and remodeling of collagen and by enhancing angiogenesis and neuronal ingrowth. These findings not only provide new information on the role of the GMSC-derived exosomes in wound healing but also provide a novel non-invasive application method of exosomes with practical value for skin repair.

Journal ArticleDOI
TL;DR: It is shown that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment, and effectively inhibits the tumour progression in three pancreatic tumour models without adverse effects.
Abstract: Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC-siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC-siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC-siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer.

Journal ArticleDOI
TL;DR: Melatonin powerfully suppressed platelet activation via restoration of the PPARγ content in platelets, which subsequently blocked FUNDC1‐required mitophagy, mitochondrial energy production, platelet hyperactivity, and cardiac I/R injury.
Abstract: Platelet activation is a major (patho-) physiological mechanism that underlies ischemia/reperfusion (I/R) injury. In this study, we explored the molecular signals for platelet hyperactivity and investigated the beneficial effects of melatonin on platelet reactivity in response to I/R injury. After reperfusion, peroxisome proliferator-activated receptor γ (PPARγ) was progressively downregulated in patients with acute myocardial infarction undergoing coronary artery bypass grafting (CABG) surgery and in mice with I/R injury model. Loss of PPARγ was closely associated with FUN14 domain containing 1 (FUNDC1) dephosphorylation and mitophagy activation, leading to increased mitochondrial electron transport chain complex (ETC.) activity, enhanced mitochondrial respiratory function, and elevated ATP production. The improved mitochondrial function strongly contributed to platelet aggregation, spreading, expression of P-selectin, and final formation of micro-thromboses, eventually resulting in myocardial dysfunction and microvascular structural destruction. However, melatonin powerfully suppressed platelet activation via restoration of the PPARγ content in platelets, which subsequently blocked FUNDC1-required mitophagy, mitochondrial energy production, platelet hyperactivity, and cardiac I/R injury. In contrast, genetic ablation of PPARγ in platelet abolished the beneficial effects of melatonin on mitophagy, mitochondrial ATP supply, and platelet activation. Our results lay the foundation for the molecular mechanism of platelet activation in response to I/R injury and highlight that the manipulation of the PPARγ/FUNDC1/mitophagy pathway by melatonin could be a novel strategy for cardioprotection in the setting of cardiac I/R injury.

Journal ArticleDOI
TL;DR: It is concluded that earlier administration of sorafenib may result in improved outcomes in patients with unresectable hepatocellular carcinoma and portal vein tumor thrombosis.
Abstract: The purpose of this study was to examine the safety and efficacy of sorafenib in Chinese patients with unresectable hepatocellular carcinoma. Data of 338 Chinese patients from the Global Investigation of therapeutic DEcisions in hepatocellular carcinoma and Of its treatment with sorafeNib study database were included. Patients were divided into those who received and did not receive sorafenib prior to surgical resection and those with and without portal vein tumor thrombosis. In the non-surgery group, the median survival was 302 days (95% confidence interval: 244–371), and the median time from diagnosis to death was 428 days (95% confidence interval: 352–556); in the surgery group, half of the patients survived for 345 days and the median time from diagnosis to death was 1000 days (95% confidence interval: 750–2816). Median progression-free survival and median time to progression were not different between the two groups. Median overall survival was 360 days (95% confidence interval: 309–435) in the non–p...

Journal ArticleDOI
TL;DR: Elevated natriuretic peptides, ST2, endothelin-1, mid-regional-pro-adrenomedullin, copeptin, and galectin-3 have all been well validated to predict death and heart failure following a MI and provide risk stratification information for heart failure.
Abstract: Cardiovascular disease (CVD) is the leading cause of death and disability worldwide. The primary prevention of CVD is dependent upon the ability to identify high-risk individuals long before the development of overt events. This highlights the need for accurate risk stratification. An increasing number of novel biomarkers have been identified to predict cardiovascular events. Biomarkers play a critical role in the definition, prognostication, and decision-making regarding the management of cardiovascular events. This review focuses on a variety of promising biomarkers that provide diagnostic and prognostic information. The myocardial tissue-specific biomarker cardiac troponin, high-sensitivity assays for cardiac troponin, and heart-type fatty acid binding proteinall help diagnose myocardial infarction (MI) in the early hours following symptoms. Inflammatory markers such as growth differentiation factor-15, high-sensitivity C-reactive protein, fibrinogen, and uric acid predict MI and death. Pregnancy-associated plasma protein A, myeloperoxidase, and matrix metalloproteinases predict the risk of acute coronary syndrome. Lipoprotein-associated phospholipase A2 and secretory phospholipase A2 predict incident and recurrent cardiovascular events. Finally, elevated natriuretic peptides, ST2, endothelin-1, mid-regional-pro-adrenomedullin, copeptin, and galectin-3 have all been well validated to predict death and heart failure following a MI and provide risk stratification information for heart failure. Rapidly developing new areas, such as assessment of micro-RNA, are also explored. All the biomarkers reflect different aspects of the development of atherosclerosis.

Journal ArticleDOI
TL;DR: An updated overview of the findings from the new studies over the past 5 years is provided, including the efficacy of antimicrobial blue light inactivation of different microbes, its mechanism of action, synergism of antim antibiotic blue light with other angents, its effect on host cells and tissues, the potential development of resistance to antimicrobialblue light by microbes, and a novel interstitial delivery approach of antimacterial blue light.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate ultrathin, flexible multimodal sensing capability of e-skin sensor based on polyaniline hollow nanospheres composite films (PANI-HNSCF).

Journal ArticleDOI
TL;DR: This case suggests that CART cocktail immunotherapy may be feasible for the treatment of CCA as well as other solid malignancies; however, the toxicities, especially the epidermal/endothelial damages, require a further investigation.
Abstract: Cholangiocarcinoma (CCA) is one of the most fatal malignant tumors with increasing incidence, mortality, and insensitivity to traditional chemo-radiotherapy and targeted therapy. Chimeric antigen receptor-modified T cell (CART) immunotherapy represents a novel strategy for the management of many malignancies. However, the potential of CART therapy in treating advanced unresectable/metastatic CCA is uncharted so far. In this case, a 52-year-old female who was diagnosed as advanced unresectable/metastatic CCA and resistant to the following chemotherapy and radiotherapy was treated with CART cocktail immunotherapy, which was composed of successive infusions of CART cells targeting epidermal growth factor receptor (EGFR) and CD133, respectively. The patient finally achieved an 8.5-month partial response (PR) from the CART-EGFR therapy and a 4.5-month-lasting PR from the CART133 treatment. The CART-EGFR cells induced acute infusion-related toxicities such as mild chills, fever, fatigue, vomiting and muscle soreness, and a 9-day duration of delayed lower fever, accompanied by escalation of IL-6 and C reactive protein (CRP), acute increase of glutamic-pyruvic transaminase and glutamic-oxalacetic transaminase, and grade 2 lichen striatus-like skin pathological changes. The CART133 cells induced an intermittent upper abdominal dull pain, chills, fever, and rapidly deteriorative grade 3 systemic subcutaneous hemorrhages and congestive rashes together with serum cytokine release, which needed emergent medical intervention including intravenous methylprednisolone. This case suggests that CART cocktail immunotherapy may be feasible for the treatment of CCA as well as other solid malignancies; however, the toxicities, especially the epidermal/endothelial damages, require a further investigation. ClinicalTrials.gov NCT01869166 and NCT02541370 .

Journal ArticleDOI
TL;DR: The pilot mAFA Trial is the first prospective randomized trial of Mobile Health technology in patients with atrial fibrillation, demonstrating that the mAF App, integrating clinical decision support, education, and patient-involvement strategies, significantly improved knowledge, drug adherence, quality of life, and anticoagulation satisfaction.

Journal ArticleDOI
TL;DR: Analysis of data indicated that the enrichment of central memory T cells (Tcm) in the infused CART-EGFR cells improved the clinical outcome, which could predict clinical response.
Abstract: Purpose: This study is an expanded and parallel clinical trial of EGFR-specific chimeric antigen receptor-engineered autologous T (CART) cell immunotherapy (NCT01869166) to assess the safety and activity of CART-EGFR cell therapy in EGFR-positive advanced unresectable, relapsed/metastatic biliary tract cancers (BTC).Experimental Design: Patients with EGFR-positive (>50%) advanced unresectable, relapsed/metastatic BTCs were enrolled. Well-produced CART-EGFR cells were infused in a manner of dose escalation after the conditioning treatment with nab-paclitaxel (100-250 mg/m2) and cyclophosphamide (15-35 mg/kg).Results: A total of 19 patients (14 cholangiocarcinomas and 5 gallbladder carcinomas) received one to three cycles of CART-EGFR cell infusion (median CART cell dose, 2.65 × 106/kg; range, 0.8-4.1 × 106/kg) within 6 months. The CART-EGFR cell infusion was tolerated, but 3 patients suffered grade ≥3 acute fever/chill. Grade 1/2 target-mediated toxicities including mucosal/cutaneous toxicities and acute pulmonary edema and grade ≥3 lymphopenia and thrombocytopenia related to the conditioning treatment were observed. Of 17 evaluable patients, 1 achieved complete response and 10 achieved stable disease. The median progression-free survival was 4 months (range, 2.5-22 months) from the first cycle of treatment. Analysis of data indicated that the enrichment of central memory T cells (Tcm) in the infused CART-EGFR cells improved the clinical outcome.Conclusions: The CART-EGFR cell immunotherapy was a safe and active strategy for EGFR-positive advanced BTCs. The enrichment of Tcm in the infused CART-EGFR cells could predict clinical response. Clin Cancer Res; 24(6); 1277-86. ©2017 AACRSee related commentary by Kalos, p. 1246.

Journal ArticleDOI
25 Oct 2017
TL;DR: The present findings suggest that the microbiota of the healthy aged in this cross-sectional study differ little from that of thehealthy young in the same population, although the minor variations that do exist depend upon the comparison cohort.
Abstract: The microbiota of the aged is variously described as being more or less diverse than that of younger cohorts, but the comparison groups used and the definitions of the aged population differ between experiments. The differences are often described by null hypothesis statistical tests, which are notoriously irreproducible when dealing with large multivariate samples. We collected and examined the gut microbiota of a cross-sectional cohort of more than 1,000 very healthy Chinese individuals who spanned ages from 3 to over 100 years. The analysis of 16S rRNA gene sequencing results used a compositional data analysis paradigm coupled with measures of effect size, where ordination, differential abundance, and correlation can be explored and analyzed in a unified and reproducible framework. Our analysis showed several surprising results compared to other cohorts. First, the overall microbiota composition of the healthy aged group was similar to that of people decades younger. Second, the major differences between groups in the gut microbiota profiles were found before age 20. Third, the gut microbiota differed little between individuals from the ages of 30 to >100. Fourth, the gut microbiota of males appeared to be more variable than that of females. Taken together, the present findings suggest that the microbiota of the healthy aged in this cross-sectional study differ little from that of the healthy young in the same population, although the minor variations that do exist depend upon the comparison cohort. IMPORTANCE We report the large-scale use of compositional data analysis to establish a baseline microbiota composition in an extremely healthy cohort of the Chinese population. This baseline will serve for comparison for future cohorts with chronic or acute disease. In addition to the expected difference in the microbiota of children and adults, we found that the microbiota of the elderly in this population was similar in almost all respects to that of healthy people in the same population who are scores of years younger. We speculate that this similarity is a consequence of an active healthy lifestyle and diet, although cause and effect cannot be ascribed in this (or any other) cross-sectional design. One surprising result was that the gut microbiota of persons in their 20s was distinct from those of other age cohorts, and this result was replicated, suggesting that it is a reproducible finding and distinct from those of other populations.

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis.
Abstract: Myocardial fibrosis is an important part of cardiac remodeling that leads to heart failure and death. Myocardial fibrosis results from increased myofibroblast activity and excessive extracellular matrix deposition. Various cells and molecules are involved in this process, providing targets for potential drug therapies. Currently, the main detection methods of myocardial fibrosis rely on serum markers, cardiac magnetic resonance imaging, and endomyocardial biopsy. This review summarizes our current knowledge regarding the pathophysiology, quantitative assessment, and novel therapeutic strategies of myocardial fibrosis.

Journal ArticleDOI
TL;DR: In this article, a wave-shaped hybrid multi-walled carbon nanotubes/polyaniline electrodes are used to fabricate stretchable micro-supercapacitors.
Abstract: Stretchable energy storage devices are required to fit for stretchable electronic devices, forming a fully stretchable system for comfortable and body-attachable electronic devices. Herein, highly stretchable micro-supercapacitors are fabricated by designing wave-shaped hybrid multiwalled carbon nanotubes/polyaniline electrodes. As-fabricated stretchable devices exhibit a large areal capacitance of 44.13 mF cm−2 and offer a power density of 0.07 mW cm−2 at an area energy density of 0.004 mW h cm−2. Owing to the designed wavy electrode structure, the electrochemical performances of the stretchable micro-supercapacitors are almost invariably under different stretching stations ranging from 5% to 40%. By fabricating stretchable micro-supercapacitors arrays, a red light-emitting diode can be easily lighted under different conditions including stretching, twisting, crimping, and winding. All these results confirm the outstanding stability and mechanical strength of stretchable micro-supercapacitors, demonstrating its potential application in skin-patchable electronics or portable/wearable devices.

Journal ArticleDOI
TL;DR: It is suggested that HOTAIR promotes Rcc tumorigenesis via miR-217/HIF-1α/AXL signaling, which may provide a new target for the diagnosis and therapy of Rcc disease.
Abstract: Long non-coding RNA HOTAIR was regarded as an oncogene in multiple cancers. Previous studies have shown that HOTAIR is involved in the proliferation and tumorigenesis of renal carcinoma cells, while microRNA (miR)-217 functions as a tumor suppressor in renal cell carcinoma (Rcc). However, the underlying molecular mechanism of HOTAIR in Rcc, especially in association with miR-217, has not been studied. In this study, we first demonstrated that HOTAIR expression was upregulated, which was correlated with tumor progression, and miR-217 downregulated in Rcc tissues and cells. Importantly, HOTAIR expression was negatively correlated with miR-217 expression in Rcc tissues. Gain- and loss-of-function of HOTAIR revealed that HOTAIR functioned as a ceRNA for miR-217 to facilitate HIF-1α expression and then upregulated AXL level promoting Rcc proliferation, migration, and EMT process, and inhibiting apoptosis. Furthermore, HOTAIR knockdown suppressed tumor growth and reduced the expression of proliferation antigen ki-67, HIF-1α, and AXL, but upregulated the expression of miR-217 in vivo. Finally, with AXL inhibitor BGB324, we confirmed that HOTAIR promoted Rcc activity through AXL signaling both in vitro and in vivo. In conclusion, these results suggest that HOTAIR promotes Rcc tumorigenesis via miR-217/HIF-1α/AXL signaling, which may provide a new target for the diagnosis and therapy of Rcc disease.

Journal ArticleDOI
06 Jan 2017-PLOS ONE
TL;DR: A strong correlation between Zika-related GTs and the cumulative numbers of reported cases is found and Integer-valued autoregression provides a useful base predictive model for ZVD cases, confirming the prognostic utility of search query based surveillance.
Abstract: We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks.

Journal ArticleDOI
TL;DR: Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation, which may serve as a potential therapeutic target for DCM.
Abstract: Background. Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Methods and Results. Cardiac-specific SIRT1 knockout (SIRT1KO) mice were generated using Cre-loxP system. SIRT1KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Conclusions. Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM.

Journal ArticleDOI
TL;DR: The contents of bone‐derived exosomes and their functions in the regulatory processes of differentiation and communication of osteoclasts and osteoblasts are reviewed and microRNAs involved in the regulation of bone remodelling are highlighted.
Abstract: Pathological destructive bone diseases are primarily caused by the failure of a lifelong self-renewal process of the skeletal system called bone remodelling. The mechanisms underlying this process include enhanced osteoclast activity and decreased generation of the osteoblast lineage. Intercellular interaction and crosstalk among these cell types are crucial for the maintenance of bone remodelling, either through the secretion of growth factors or direct cell-cell physical engagement. Recent studies have revealed that exosomes derived from bone cells, including osteoclasts, osteoblasts and their precursors, play pivotal roles on bone remodelling by transferring biologically active molecules to target cells, especially in the processes of osteoclast and osteoblast differentiation. Here, we review the contents of bone-derived exosomes and their functions in the regulatory processes of differentiation and communication of osteoclasts and osteoblasts. In addition, we highlight the characteristics of microRNAs of bone-derived exosomes involved in the regulation of bone remodelling, as well as the potential clinical applications of bone-derived exosomes in bone remodelling disorders.

Journal ArticleDOI
TL;DR: A novel role of miR-199a is revealed as a key regulator of cardiac autophagy, suggesting that targeting miRNAs controlling autophagic as a potential therapeutic strategy for cardiac disease.
Abstract: Basal autophagy is tightly regulated by transcriptional and epigenetic factors to maintain cellular homeostasis. Dysregulation of cardiac autophagy is associated with heart diseases, including cardiac hypertrophy, but the mechanism governing cardiac autophagy is rarely identified. To analyze the in vivo function of miR-199a in cardiac autophagy and cardiac hypertrophy, we generated cardiac-specific miR-199a transgenic mice and showed that overexpression of miR-199a was sufficient to inhibit cardiomyocyte autophagy and induce cardiac hypertrophy in vivo. miR-199a impaired cardiomyocyte autophagy in a cell-autonomous manner by targeting glycogen synthase kinase 3β (GSK3β)/mammalian target of rapamycin (mTOR) complex signaling. Overexpression of autophagy related gene 5 (Atg5) attenuated the hypertrophic effects of miR-199a overexpression on cardiomyocytes, and activation of autophagy using rapamycin was sufficient to restore cardiac autophagy and decrease cardiac hypertrophy in miR-199a transgenic mice. These results reveal a novel role of miR-199a as a key regulator of cardiac autophagy, suggesting that targeting miRNAs controlling autophagy as a potential therapeutic strategy for cardiac disease.

Journal ArticleDOI
TL;DR: The results demonstrate that the AFG creates an instructive microenvironment by mimicking the native fibrin cable as well as the oriented and soft features of nerve ECM to accelerate axonal regrowth, thus showing great promising potential for applications in neural regeneration.

Journal ArticleDOI
TL;DR: In this article, four kinds of planar devices namely micro-supercapacitors, pressure sensor, photodetector and gas sensor were modularly manufactured, all with the reduced graphene oxide (rGO) encapsulated poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] (PVDF) nanofibers (NFs) as the functional materials.