scispace - formally typeset
Search or ask a question
Institution

Chonbuk National University

EducationJeonju, South Korea
About: Chonbuk National University is a education organization based out in Jeonju, South Korea. It is known for research contribution in the topics: Apoptosis & Nanofiber. The organization has 14820 authors who have published 28884 publications receiving 554131 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The novel fabrication idea and the obtained results suggested that the rCL/CS composite hydrogel scaffolds could be a promising three-dimensional bio-scaffold for bone tissue engineering.

107 citations

Journal ArticleDOI
01 Jun 2005-Carbon
TL;DR: In this paper, a systematic kinetic study of the oxidative etching of graphite basal planes along the a and c directions at temperatures up to 950 °C was undertaken, and it was found that at temperatures above 875 Â c, oxidation of graphitic surfaces is initiated from basal plane carbon atoms as well as from point defects.

107 citations

Journal ArticleDOI
TL;DR: Ferrimagnetic cobalt ferrite (CoFe2O4) nanoparticles were synthesized by employing co-precipitation method as mentioned in this paper, and the product physico-chemical and magnetic properties with respect to cetyl trimethylammonium bromide (CTAB), hexamethylenetetramine (HMT) and polyethylene glycol (PEG-400) surfactants were investigated.
Abstract: Ferrimagnetic cobalt ferrite (CoFe2O4) nanoparticles were synthesized by employing co-precipitation method. Product physico-chemical and magnetic properties with respect to cetyl trimethylammonium bromide (CTAB), hexamethylenetetramine (HMT) and polyethylene glycol (PEG-400) surfactants were investigated. XRD pattern and Raman characteristic active modes revealed the cubic cobalt ferrite structure formation. SEM images explored spherical shaped product with different particle size. Identified strong PL emission peaks confirmed the product quality. IR metal oxygen vibration at 615 and 426 cm−1 revealed tetrahedral and octahedral site of cobalt ferrite system. Product electrochemical behavior was found to be size dependent and high specific capacitance was observed using CTAB. Room temperature ferrimagnetic behavior was confirmed through VSM studies. High saturation value as 66 emu/g was found using PEG. Particles with larger crystallite and particle size exhibited improved magnetic behavior.

106 citations

Journal ArticleDOI
01 Jul 2021-Small
TL;DR: In this paper, a defect-rich and in situ oxidized Fe-Co-O/Co@NC-mns/NF precatalyst was developed from the in situ oxidation of micropillar-like heterostructured Fe-coO/co@NC/Co precatalysts.
Abstract: Introducing defects and in situ topotactic transformation of the electrocatalysts generating heterostructures of mixed-metal oxides(hydroxides) that are highly active for oxygen evolution reaction (OER) in tandem with metals of low hydrogen adsorption barrier for efficient hydrogen evolution reaction (HER) is urgently demanded for boosting the sluggish OER and HER kinetics in alkaline media. Ascertaining that, metal-organic-framework-derived freestanding, defect-rich, and in situ oxidized Fe-Co-O/Co metal@N-doped carbon (Co@NC) mesoporous nanosheet (mNS) heterostructure on Ni foam (Fe-Co-O/Co@NC-mNS/NF) is developed from the in situ oxidation of micropillar-like heterostructured Fe-Co-O/Co@NC/NF precatalyst. The in situ oxidized Fe-Co-O/Co@NC-mNS/NF exhibits excellent bifunctional properties by demanding only low overpotentials of 257 and 112 mV, respectively, for OER and HER at the current density of 10 mA cm-2 , with long-term durability, attributed to the existence of oxygen vacancies, higher specific surface area, increased electrochemical active surface area, and in situ generated new metal (oxyhydr)oxide phases. Further, Fe-Co-O/Co@NC-mNS/NF (+/-) electrolyzer requires only a low cell potential of 1.58 V to derive a current density of 10 mA cm-2 . Thus, the present work opens a new window for boosting the overall alkaline water splitting.

106 citations

Journal ArticleDOI
TL;DR: In this article, a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) was proposed to support the frequency control of a power system.
Abstract: This paper proposes a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) that supports the frequency control of a power system. If a frequency deviation occurs, the proposed scheme aims to release a large amount of kinetic energy (KE) stored in the rotating masses of a DFIG to raise the frequency nadir (FN). Upon detecting the event, the scheme instantly increases its output to the torque limit and then reduces the output with the rotor speed so that it converges to the stable operating range. To restore the rotor speed while causing a small second frequency dip (SFD), after the rotor speed converges the power reference is reduced by a small amount and maintained until it meets the reference for maximum power point tracking control. The test results demonstrate that the scheme can improve the FN and maximum rate of change of frequency while causing a small SFD in any wind conditions and in a power system that has a high penetration of wind power, and thus the scheme helps maintain the required level of system reliability. The scheme releases the KE from 2.9 times to 3.7 times the Hydro-Quebec requirement depending on the power reference.

106 citations


Authors

Showing all 14943 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Andrew Ivanov142181297390
Dong-Chul Son138137098686
C. Haber135150798014
Tae Jeong Kim132142093959
Alessandro Cerri1291244103225
Paul M. Vanhoutte12786862177
Jason Nielsen12589372688
Chi Lin1251313102710
Paul Lujan123125576799
Young Hee Lee122116861107
Min Suk Kim11997566214
Alexandre Sakharov11958256771
Yang-Kook Sun11778158912
Rui L. Reis115160863223
Network Information
Related Institutions (5)
Kyungpook National University
42.1K papers, 834.6K citations

98% related

Korea University
82.4K papers, 1.8M citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
2022203
20212,069
20201,883
20191,798
20181,893