scispace - formally typeset
Search or ask a question
Institution

Chonbuk National University

EducationJeonju, South Korea
About: Chonbuk National University is a education organization based out in Jeonju, South Korea. It is known for research contribution in the topics: Apoptosis & Graphene. The organization has 14820 authors who have published 28884 publications receiving 554131 citations.


Papers
More filters
Journal ArticleDOI
T. Aaltonen1, Jahred Adelman2, T. Akimoto3, B. Álvarez González4  +615 moreInstitutions (92)
TL;DR: An analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi(+)pi(-) using 2.4 fb(-1) of integrated luminosity from pp collisions at square root(s)=1.96 TeV, which is the most precise determination to date.
Abstract: We present an analysis of the mass of the X(3872) reconstructed via its decay to J/psi pi(+)pi(-) using 2.4 fb(-1) of integrated luminosity from p (p) over bar collisions at root s = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. The possible existence of two nearby mass states is investigated. Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference between two hypothetical states for different assumed ratios of contributions to the observed peak. For equal contributions, the 95% confidence level upper limit on the mass difference is 3.6 MeV/c(2). Under the single-state model the X(3872) mass is measured to be 3871.61 +/- 0.16(stat) +/- 0.19(syst) MeV/c(2), which is the most precise determination to date.

104 citations

Journal ArticleDOI
TL;DR: In this paper, a 3D hierarchical hybrid architecture consisting of in situ designed cobalt-encapsulated nitrogen doped carbon nanotubes (Co-NCNTs) grown on nitrogen-doped graphene (NG), is fabricated for asymmetric supercapacitors.
Abstract: A novel three-dimensional (3D) hierarchical hybrid architecture, consisting of in situ designed cobalt-encapsulated nitrogen doped carbon nanotubes (Co–NCNTs) grown on nitrogen doped graphene (NG), is fabricated for asymmetric supercapacitors. When evaluated as an electrode material for supercapacitors, the 3D hybrid has an excellent energy density, outstanding rate capability and long-cycle life compared with commercial electrode materials. The decent electrochemical performance is comparable to most of the earlier reported results and the synergistic effect boosts the pseudocapacitive performance. The constructed hybrid exhibits excellent energy storage characteristics, which result in an ultra-high specific capacitance of 2568 F g−1 at 2 A g−1 and excellent rate capability with an extraordinary capacitance of 1594 F g−1 at 100 A g−1 (96.64% capacitance retention after 20000 cycles). The improvement in the outstanding electrochemical performance can be attributed to the unique morphology, extraordinary porosity, excellent conductive networks, and the intense networking of Co–NCNT and NG nanosheets in the 3D hybrid. An asymmetric supercapacitor fabricated using the 3D NG/Co–NCNT hybrid as the positive electrode and NG as the negative electrode demonstrates exceptional performance for practical energy storage devices. The assembled asymmetric supercapacitors provide a greater energy density (∼88.44 W h kg−1), an ultra-high power density (∼17991 W kg−1 at 56.97 W h kg−1), and outstanding cyclability (∼10000 times).

104 citations

Journal ArticleDOI
TL;DR: In this article, the nitrogen doping of carbon nanotubes in a periodic supercell using density functional theory was studied and the most stable isomer is different for different chiralities of the tube.
Abstract: We have theoretically studied nitrogen doping of carbon nanotubes in a periodic supercell using density functional theory. We find that the most stable isomer is different for different chiralities of the tube. In the (10,0) tube, N atoms tend to be uniformly distributed, while they prefer to be adjacent to each other in (5,5) tube. As more nitrogen atoms are introduced in (5,5) tube, they are aligned parallel to the tube axis in two rows, breaking the $\mathrm{N}\mathrm{N}$ single bonds and forming aromatic $(4n+2)\ensuremath{\pi}$ systems. This leads us to conjecture that the armchair tubes are more easily subject to the opening of the tubular sheets than the zigzag tubes under the existence of a nitrogen source. The hole formation recently proposed by Czerw et al. [Nano Lett. 1, 457 (2001)] is also shown to be energetically favorable. Calculation of the electronic density of states shows that the doping-induced electronic states near the Fermi energy are sensitive to the chirality.

104 citations

Journal ArticleDOI
TL;DR: Results suggest that TNF-α-induced inflammatory angiogenesis might be facilitated by the induction of Ang2, an important regulator of vasculogenesis and vascular integrity.

104 citations


Authors

Showing all 14943 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Andrew Ivanov142181297390
Dong-Chul Son138137098686
C. Haber135150798014
Tae Jeong Kim132142093959
Alessandro Cerri1291244103225
Paul M. Vanhoutte12786862177
Jason Nielsen12589372688
Chi Lin1251313102710
Paul Lujan123125576799
Young Hee Lee122116861107
Min Suk Kim11997566214
Alexandre Sakharov11958256771
Yang-Kook Sun11778158912
Rui L. Reis115160863223
Network Information
Related Institutions (5)
Kyungpook National University
42.1K papers, 834.6K citations

98% related

Korea University
82.4K papers, 1.8M citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Sungkyunkwan University
56.4K papers, 1.3M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202366
2022203
20212,069
20201,883
20191,798
20181,893