scispace - formally typeset
Search or ask a question
Institution

Christ University

EducationBengaluru, India
About: Christ University is a education organization based out in Bengaluru, India. It is known for research contribution in the topics: Computer science & Convection. The organization has 2267 authors who have published 2715 publications receiving 14575 citations. The organization is also known as: Christ College & Christ University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported the synthesis of hydroxyapatite (HAp) from eggshells and green synthesis of HAp from egg shells with incorporation of Piper betel leaf extract (PBL-HAp), using microwave conversion method.

9 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient green protocol was developed for the conversion of a range of aldehydes to the corresponding nitriles using a solid-phase reusable catalyst combined with microwave irradiation.
Abstract: An efficient green protocol has been developed for the conversion of a range of aldehydes to the corresponding nitriles using a solid-phase reusable catalyst combined with microwave irradiation. The highlighting features of this method are short reaction time, environmentally compatible, reusability of the catalyst and good product yield.

9 citations

DOI
02 Oct 2019
TL;DR: Results of this study suggest that easily available raw materials such as fruit peels offer cost-effective substrates for production of commercially important microbial proteins for alarming global issues linked to protein malnutrition.
Abstract: Background and objective: Pineapple peels contain significant quantities of carbohydrates, which can be used as cheap raw materials for production of commercially important products through fermentation. The aim of this study was to use this feed stock for the cultivation of Saccharomyces cerevisiae NCDC 364 and its use as single cell protein. Material and methods: The single cell protein was produced using discarded pineapple peels and Saccharomyces cerevisiae NCDC 364. Optimization of bioprocess variables (temperature, pH, incubation period, carbon source and nitrogen source) affecting single cell protein production was carried out using classical "one factor at a time" approach. The harvested cells from optimized media were screened for amino acid content using high-performance thin-layer chromatography. Results and conclusion: The Saccharomyces cerevisiae NCDC 364 produced maximum single cell protein in pineapple peel based media, compared to non-optimized media. The "one factor at a time" approach showed that the maximum biomass production was achieved at optimized levels of temperature of 25oC, pH of 5, incubation period of 120 h, carbon source of 1% sucrose and nitrogen source of 0.5% beef extract. The amino acid profiling of the harvested biomass using high-performance thin-layer chromatography analysis revealed that tryptophan included a comparatively higher concentration of 6.52%, followed by threonine (3.25%). Results of this study suggest that easily available raw materials such as fruit peels offer cost-effective substrates for production of commercially important microbial proteins for alarming global issues linked to protein malnutrition. Conflict of interest: The authors declare no conflict of interest.

9 citations

Journal ArticleDOI
TL;DR: Amorphous Ru-Pi nanoclusters deposited on PEDOT modified carbon fibre paper electrode have been investigated as a potential oxygen evolution electrocatalyst in this paper, where linear sweep voltammetric (LSV) studies corroborated that CFP/PEDOT/Ru-Pi has exhibited higher oxidation peak current when compared to other modified electrodes.

9 citations


Authors

Showing all 2404 results

Network Information
Related Institutions (5)
Amity University
12.7K papers, 86K citations

80% related

Amrita Vishwa Vidyapeetham
11K papers, 76.1K citations

79% related

VIT University
24.4K papers, 261.8K citations

78% related

SRM University
11.7K papers, 103.7K citations

78% related

Punjabi University
5.9K papers, 73.1K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022172
2021795
2020479
2019360
2018239