scispace - formally typeset
Search or ask a question
Institution

Christ University

EducationBengaluru, India
About: Christ University is a education organization based out in Bengaluru, India. It is known for research contribution in the topics: Computer science & Convection. The organization has 2267 authors who have published 2715 publications receiving 14575 citations. The organization is also known as: Christ College & Christ University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the role of mixed convection, Brownian motion, and thermophoresis in the dynamics of Casson hybrid nanofluid in a bidirectional nonlinear stretching sheet is determined.
Abstract: The purpose of this study is to determine the role of mixed convection, Brownian motion, and thermophoresis in the dynamics of Casson hybrid nanofluid in a bidirectional nonlinear stretching sheet. For the flow model, a combination of Tiwari and Das models, as well as Buongiornos model, is considered. The thermophysical characteristics of G r , T i O 2 , and blood are employed. With the assistance of relevant similarity transformation, the describing flow equations of a Casson hybrid nanofluid model are reformed in the form of a system with a single independent variable. The solution for these equations is obtained using the RKF-45 approach. The velocity, temperature, and concentration fields are visually developed for both linear and non-linear stretching sheets, and the implications of the major parameters are presented in detail. It is clear from the current investigation that heat and mass transfer characteristics of fluid are better in the case of linear stretching than non-linear stretching. Furthermore, the mixed convection parameter is found to enhance the fluid flow velocity. However, the trend is quite opposite in the thermal and concentration fields. Meanwhile, the increase in the yield stress caused due to the rise in the Casson parameter decreases the flow velocity.

37 citations

Journal ArticleDOI
TL;DR: Nanocomposites synthesized from agro-waste displayed significantly higher antimicrobial activity compared to the precursor and graphene oxide nanostructures thereby making them excellent candidates for various bactericidal applications such as disinfectants, sanitary agents etc.
Abstract: Antibacterial screening of graphene-tin oxide nanocomposites synthesized from carbonized wood and coconut shell is investigated against Pseudomonas aeruginosa for the first time. Efficient and facile one step hydrothermal process adopted in the present work for the synthesis of graphene-tin oxide nanoparticles provides an ideal method for the economic large-scale production of the same. Graphene-tin oxide nanocomposites derived from wood charcoal possess a spherical morphology whereas rod like structures are seen in the case of coconut shell derivatives. An excitation independent fluorescence response is observed in graphene-tin oxide nanohybrids while graphene oxide nanostructures exhibited an excitation dependent behavior. These hydrophilic nanostructures are highly stable and exhibited no sign of luminescence quenching or particle aggregation even after a storage of 30 months. Bactericidal effects of the nanostructures obtained from coconut shell is found to be relatively higher compared to those procured from wood. This variation in antibacterial performance of the samples is directly related to their morphological difference which in turn is heavily influenced by the precursor material used. MIC assay revealed that coconut shell derived graphene-tin oxide composite is able to inhibit the bacterial growth at a lower concentration (250 μg/mL) than the other nanostructures. Nanocomposites synthesized from agro-waste displayed significantly higher antimicrobial activity compared to the precursor and graphene oxide nanostructures thereby making them excellent candidates for various bactericidal applications such as disinfectants, sanitary agents etc.

37 citations

Journal ArticleDOI
K. B. Akshaya1, Varghese Anitha1, M. Nidhin1, Y.N. Sudhakar1, George Louis1 
01 Sep 2020-Talanta
TL;DR: The proposed method was effectively applied in the non-enzymatic determination of MMA at an ultralow level in human blood serum and urine samples and displayed high selectivity toward MMA in the presence of other interfering substances.

37 citations

Journal ArticleDOI
TL;DR: The fluorescent nanodots synthesized from such an abundant and cost-effective precursor exhibiting high copper ion sensitivity is being reported for the first time.
Abstract: Fluorescent organic semiconducting dots (OSDs) with tunable particle size and surface functionality are synthesized from lignite by chemical oxidation method followed by ultra-sonication techniques and dialysis. The defects and oxygen functionalities play a vital role in the photoluminescent property of the synthesized nanoparticles along with quantum confinement effect. These nanomaterials are suitable for imaging and chemical sensing applications as there is no photobleaching and quenching even after a continuous UV exposure of 24 hours and storage of 2 years. The excellent excitation dependent luminescence of the synthesized carbon dots can be utilized for making a low-cost carbon-based sensor for Cu2+ metal ions sensing. The OSDs show good ratiometric fluorescent sensing and can be used as a reliable probe for the detection of Cu2+ ions. They exhibit excellent detection limit of copper ion in acidic solution to a very low concentration of 0.0089 nM. The fluorescent nanodots synthesized from such an abundant and cost-effective precursor exhibiting high copper ion sensitivity is being reported for the first time.

37 citations

Journal ArticleDOI
05 Aug 2020
TL;DR: Ebola and Dengue are the critical diseases caused by RNA viruses, especially in the tropical parts of the globe, and no prominent therapeutic options are available so far, and an effort was made to evaluate the efficacy of black pepper (Piper nigrum L.) alkaloid Piperine as a potential drug through computational docking simulation.
Abstract: Ebola and Dengue are the critical diseases caused by RNA viruses, especially in the tropical parts of the globe, including Asia and Africa, and no prominent therapeutic options are available so far. Here, an effort was made to evaluate the efficacy of black pepper (Piper nigrum L.) alkaloid Piperine as a potential drug through computational docking simulation. Eight structurally essential proteins of Dengue and Ebola virus were selected as in silico docking targets for Piperine. Absorption, Distribution, Metabolism, and Excretion profile showed that Piperine was safe and possessed significant drug-like properties. Molecular dynamic simulation and binding free energy calculation showed that Piperine could inhibit Methyltransferase (PDB id 1L9K) of Dengue and VP35 Interferon Inhibitory Domain (PDB id 3FKE) of Ebola virus in comparison with the commercial antiviral Ribavirin. Furthermore, statistical analysis based on multivariate and clustering approaches revealed that Piperine had more affinity towards viral proteins than that of Ribavirin.

36 citations


Authors

Showing all 2404 results

Network Information
Related Institutions (5)
Amity University
12.7K papers, 86K citations

80% related

Amrita Vishwa Vidyapeetham
11K papers, 76.1K citations

79% related

VIT University
24.4K papers, 261.8K citations

78% related

SRM University
11.7K papers, 103.7K citations

78% related

Punjabi University
5.9K papers, 73.1K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022172
2021795
2020479
2019360
2018239