scispace - formally typeset
Search or ask a question
Institution

Chung-Ang University

EducationSeoul, South Korea
About: Chung-Ang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Thin film. The organization has 13381 authors who have published 26978 publications receiving 416735 citations. The organization is also known as: CAU & Chung.
Topics: Population, Thin film, Medicine, Cancer, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: This work breaks the long-standing bottlenecks limiting materials innovation of n-type polymers, which paves a new avenue for developing polymer acceptors with improved optoelectronic properties and heralds a brighter future of all-PSCs.
Abstract: Currently, n-type acceptors in high-performance all-polymer solar cells (all-PSCs) are dominated by imide-functionalized polymers, which typically show medium bandgap. Herein, a novel narrow-bandgap polymer, poly(5,6-dicyano-2,1,3-benzothiadiazole-alt-indacenodithiophene) (DCNBT-IDT), based on dicyanobenzothiadiazole without an imide group is reported. The strong electron-withdrawing cyano functionality enables DCNBT-IDT with n-type character and, more importantly, alleviates the steric hindrance associated with typical imide groups. Compared to the benchmark poly(naphthalene diimide-alt-bithiophene) (N2200), DCNBT-IDT shows a narrower bandgap (1.43 eV) with a much higher absorption coefficient (6.15 × 104 cm-1 ). Such properties are elusive for polymer acceptors to date, eradicating the drawbacks inherited in N2200 and other high-performance polymer acceptors. When blended with a wide-bandgap polymer donor, the DCNBT-IDT-based all-PSCs achieve a remarkable power conversion efficiency of 8.32% with a small energy loss of 0.53 eV and a photoresponse of up to 870 nm. Such efficiency greatly outperforms those of N2200 (6.13%) and the naphthalene diimide (NDI)-based analog NDI-IDT (2.19%). This work breaks the long-standing bottlenecks limiting materials innovation of n-type polymers, which paves a new avenue for developing polymer acceptors with improved optoelectronic properties and heralds a brighter future of all-PSCs.

102 citations

Journal ArticleDOI
TL;DR: The results from this study elucidate the proteins involved in capacitation, which may aid in the design of biomarkers that can be used to predict boar sperm quality.
Abstract: Mammalian spermatozoa must undergo capacitation, before becoming competent for fertilization. Despite its importance, the fundamental molecular mechanisms of capacitation are poorly understood. Therefore, in this study, we applied a proteomic approach for identifying capacitation-related proteins in boar spermatozoa in order to elucidate the events more precisely. 2-DE gels were generated from spermatozoa samples in before- and after-capacitation. To validate the 2-DE results, Western blotting and immunocytochemistry were performed with 2 commercially available antibodies. Additionally, the protein-related signaling pathways among identified proteins were detected using Pathway Studio 9.0. We identified Ras-related protein Rab-2, Phospholipid hydroperoxide glutathione peroxidase (PHGPx) and Mitochondrial pyruvate dehydrogenase E1 component subunit beta (PDHB) that were enriched before-capacitation, and NADH dehydrogenase 1 beta subcomplex 6, Mitochondrial peroxiredoxin-5, (PRDX5), Apolipoprotein A-I (APOA1), Mitochondrial Succinyl-CoA ligase [ADP-forming] subunit beta (SUCLA2), Acrosin-binding protein, Ropporin-1A, and Spermadhesin AWN that were enriched after-capacitation (>3-fold) by 2-DE and ESI-MS/MS. SUCLA2 and PDHB are involved in the tricarboxylic acid cycle, whereas PHGPx and PRDX5 are involved in glutathione metabolism. SUCLA2, APOA1 and PDHB mediate adipocytokine signaling and insulin action. The differentially expressed proteins following capacitation are putatively related to sperm functions, such as ROS and energy metabolism, motility, hyperactivation, the acrosome reaction, and sperm-egg interaction. The results from this study elucidate the proteins involved in capacitation, which may aid in the design of biomarkers that can be used to predict boar sperm quality.

102 citations

Journal ArticleDOI
TL;DR: In Korean patients infected with HBV genotype C, precore mutation occurred almost invariably along with HBeAg seroconversion and core promoter TA mutation was frequent irrespective of viral replication levels or disease severity.

102 citations

Journal ArticleDOI
B. Abi1, R. Acciarri2, M. A. Acero3, George Adamov4  +979 moreInstitutions (156)
TL;DR: Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

102 citations

Journal ArticleDOI
26 Apr 2012-PLOS ONE
TL;DR: Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains, and consistent with the HGT hypothesis, a total of 15 genomic islands in strainSN2 likely confer ecological fitness traits specific to the adaptation of strain SN1 to its seasonally cold sea-tidal flat habitat.
Abstract: Alteromonas species are globally distributed copiotrophic bacteria in marine habitats. Among these, sea-tidal flats are distinctive: undergoing seasonal temperature and oxygen-tension changes, plus periodic exposure to petroleum hydrocarbons. Strain SN2 of the genus Alteromonas was isolated from hydrocarbon-contaminated sea-tidal flat sediment and has been shown to metabolize aromatic hydrocarbons there. Strain SN2's genomic features were analyzed bioinformatically and compared to those of Alteromonas macleodii ecotypes: AltDE and ATCC 27126. Strain SN2's genome differs from that of the other two strains in: size, average nucleotide identity value, tRNA genes, noncoding RNAs, dioxygenase gene content, signal transduction genes, and the degree to which genes collected during the Global Ocean Sampling project are represented. Patterns in genetic characteristics (e.g., GC content, GC skew, Karlin signature, CRISPR gene homology) indicate that strain SN2's genome architecture has been altered via horizontal gene transfer (HGT). Experiments proved that strain SN2 was far more cold tolerant, especially at 5°C, than the other two strains. Consistent with the HGT hypothesis, a total of 15 genomic islands in strain SN2 likely confer ecological fitness traits (especially membrane transport, aromatic hydrocarbon metabolism, and fatty acid biosynthesis) specific to the adaptation of strain SN2 to its seasonally cold sea-tidal flat habitat.

101 citations


Authors

Showing all 13500 results

NameH-indexPapersCitations
Carl Nathan13543091535
Scheffer C.G. Tseng9333329213
Richard L. Sidman9329732009
H. Yamaguchi9037533135
Ajith Abraham86111331834
Byung Ihn Choi7860924925
Stefano Soatto7849923597
J. H. Kim7356623052
Daehee Kang7242223959
Lance M. McCracken7228118897
Masanobu Shinozuka6945621961
Seung U. Kim6435514269
Sug Hyung Lee6445421552
Seung U. Kim6312911983
Nam Jin Yoo6340312692
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Kyung Hee University
46.5K papers, 953.5K citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022204
20212,536
20202,301
20192,140
20181,991