scispace - formally typeset
Search or ask a question
Institution

Chung-Ang University

EducationSeoul, South Korea
About: Chung-Ang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Thin film. The organization has 13381 authors who have published 26978 publications receiving 416735 citations. The organization is also known as: CAU & Chung.
Topics: Population, Thin film, Apoptosis, Graphene, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: Ischemic postconditioning did not improve myocardial reperfusion in patients with ST-segment–elevation myocardIAL infarction undergoing primary PCI with current standard practice.
Abstract: Background—Ischemic postconditioning has been reported to reduce infarct size in patients with ST-segment–elevation myocardial infarction. However, cardioprotective effects of postconditioning have not been demonstrated in a large-scale trial. Methods and Results—We performed a multicenter, prospective, randomized, open-label, blinded end-point trial. A total of 700 patients undergoing primary percutaneous coronary intervention (PCI) for ST-segment–elevation myocardial infarction within 12 hours after symptom onset were randomly assigned to the postconditioning group or to the conventional primary PCI group in a 1:1 ratio. Postconditioning was performed immediately after restoration of coronary flow as follows: The angioplasty balloon was positioned at the culprit lesion and inflated 4 times for 1 minute with low-pressure ( 70%) measured at 30...

161 citations

Journal ArticleDOI
TL;DR: In this article, the authors established temporal decay estimates for weak solutions to the Hall-magnetohydrodynamic equations and obtained algebraic time decay for higher order Sobolev norms of small initial data solutions.

161 citations

Journal ArticleDOI
TL;DR: This work demonstrates real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique and discusses some drawbacks of this ultrahigh-speed configuration, including the reduced measurement accuracy, lowered spatial resolution and limited strain dynamic range.
Abstract: Optical fibre sensors based on Brillouin scattering have been vigorously studied in the context of structural health monitoring on account of their capacity for distributed strain and temperature measurements. However, real-time distributed strain measurement has been achieved only for two-end-access systems; such systems reduce the degree of freedom in embedding the sensors into structures, and furthermore render the measurement no longer feasible when extremely high loss or breakage occurs at a point along the sensing fibre. Here, we demonstrate real-time distributed measurement with an intrinsically one-end-access reflectometry configuration by using a correlation-domain technique. In this method, the Brillouin gain spectrum is obtained at high speed using a voltage-controlled oscillator, and the Brillouin frequency shift is converted into a phase delay of a synchronous sinusoidal waveform; the phase delay is subsequently converted into a voltage, which can be directly measured. When a single-point measurement is performed at an arbitrary position, a strain sampling rate of up to 100 kHz is experimentally verified by detecting locally applied dynamic strain at 1 kHz. When distributed measurements are performed at 100 points with 10 times averaging, a repetition rate of 100 Hz is verified by tracking a mechanical wave propagating along the fibre. Some drawbacks of this ultrahigh-speed configuration, including the reduced measurement accuracy, lowered spatial resolution and limited strain dynamic range, are also discussed. An optical fibre sensing scheme that measures strain with a high spatial resolution and a very high sampling rate has been developed. Optical fibre sensors based on Brillouin scattering are promising for monitoring structural health. The system built by Yosuke Mizuno of Tokyo Institute of Technology and colleagues measures the frequency shift induced in the fibre’s Brillouin gain spectrum on stretching the fibre. This frequency shift is converted into a phase delay of a sinusoidal waveform, which enables the direct detection of the frequency shift. The approach allows single-point strain measurements to be performed at a rate of up to 100 kilohertz at any point along the fibre. Distributed measurements at multiple points along the fibre are also possible, although at lower repetition rates. Importantly, the scheme only requires access from one end of the fibre.

160 citations

Journal ArticleDOI
01 Mar 2003-Energy
TL;DR: In this paper, an exergoeconomic model was used to visualize the cost formation process and the productive interaction between components of a 500MW combined cycle plant, where mass and energy conservation laws were applied to each component of the system, and quantitative balances of the exergy and exergetic cost for each component were carefully considered.

160 citations

Journal ArticleDOI
21 Mar 2014-PLOS ONE
TL;DR: The increased osteogenic differentiation of MSCs is shown under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip, suggesting that TAZ is an important mediator of interstitial flow-driven shear Stress signaling in osteoblast differentiation ofMSCs.
Abstract: Shear stress activates cellular signaling involved in cellular proliferation, differentiation, and migration. However, the mechanisms of mesenchymal stem cell (MSC) differentiation under interstitial flow are not fully understood. Here, we show the increased osteogenic differentiation of MSCs under exposure to constant, extremely low shear stress created by osmotic pressure-induced flow in a microfluidic chip. The interstitial level of shear stress in the proposed microfluidic system stimulated nuclear localization of TAZ (transcriptional coactivator with PDZ-binding motif), a transcriptional modulator of MSCs, activated TAZ target genes such as CTGF and Cyr61, and induced osteogenic differentiation. TAZ-depleted cells showed defects in shear stress-induced osteogenic differentiation. In shear stress induced cellular signaling, Rho signaling pathway was important forthe nuclear localization of TAZ. Taken together, these results suggest that TAZ is an important mediator of interstitial flow-driven shear stress signaling in osteoblast differentiation of MSCs.

160 citations


Authors

Showing all 13500 results

NameH-indexPapersCitations
Carl Nathan13543091535
Scheffer C.G. Tseng9333329213
Richard L. Sidman9329732009
H. Yamaguchi9037533135
Ajith Abraham86111331834
Byung Ihn Choi7860924925
Stefano Soatto7849923597
J. H. Kim7356623052
Daehee Kang7242223959
Lance M. McCracken7228118897
Masanobu Shinozuka6945621961
Seung U. Kim6435514269
Sug Hyung Lee6445421552
Seung U. Kim6312911983
Nam Jin Yoo6340312692
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Kyung Hee University
46.5K papers, 953.5K citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022204
20212,535
20202,301
20192,140
20181,991