scispace - formally typeset
Search or ask a question
Institution

Chung-Ang University

EducationSeoul, South Korea
About: Chung-Ang University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Population & Thin film. The organization has 13381 authors who have published 26978 publications receiving 416735 citations. The organization is also known as: CAU & Chung.
Topics: Population, Thin film, Medicine, Cancer, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: Biosynthesis of diverse metal nanoparticles has recently been demonstrated using such heavy metal detoxification systems in microorganisms, which provides several advantages over the traditional chemical synthesis methods.
Abstract: Metal nanoparticles are garnering considerable attention owing to their high potential for use in various applications in the material, electronics, and energy industries. Recent research efforts have focused on the biosynthesis of metal nanomaterials using microorganisms rather than traditional chemical synthesis methods. Microorganisms have evolved to possess molecular machineries for detoxifying heavy metals, mainly by employing metal-binding proteins and peptides. Biosynthesis of diverse metal nanoparticles has recently been demonstrated using such heavy metal detoxification systems in microorganisms, which provides several advantages over the traditional chemical synthesis methods. First, metal nanoparticles can be synthesized at mild temperatures, such as at room temperature, with less energy input. Second, no toxic chemicals or reagents are needed, and thus the process is environmentally friendly. Third, diverse metal nanoparticles, including those that have never been chemically synthesized, can be biosynthesized. Here, we review the strategies for the biosynthesis of metal nanoparticles using microorganisms, and provide future prospects.

126 citations

Journal ArticleDOI
TL;DR: In this study, an apparatus with a freezing rate gradient was used to systematically investigate the effect of cryoprotectants on the redispersibility of nanoparticles as a function of freezing rate, and an irreversible aggregation map was constructed.

126 citations

Journal ArticleDOI
TL;DR: The results indicated that key regulators in BV-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of the ERK and Akt signal pathway.

126 citations

Journal ArticleDOI
TL;DR: Detailed BAY-pharmacological target pathways were further characterized to determine how this compound simultaneously suppresses various responses and suggest that BAY is an inhibitor with multiple targets and could serve as a lead compound in developing strong anti-inflammatory drugs withmultiple targets in inflammatory responses.
Abstract: BAY 11-7082 (BAY) is an inhibitor of κB kinase (IKK) that has pharmacological activities that include anticancer, neuroprotective, and anti-inflammatory effects. In this study, BAY-pharmacological target pathways were further characterized to determine how this compound simultaneously suppresses various responses. Primary and cancerous (RAW264.7 cells) macrophages were activated by lipopolysaccharide, a ligand of toll-like receptor 4. As reported previously, BAY strongly suppressed the production of nitric oxide, prostaglandin E(2), and tumor necrosis factor-α and reduced the translocation of p65, major subunit of nuclear factor-κB, and its upstream signaling events such as phosphorylation of IκBα, IKK, and Akt. In addition, BAY also suppressed the translocation and activation of activator protein-1, interferon regulatory factor-3, and signal transducer and activator of transcription-1 by inhibiting the phosphorylation or activation of extracellular signal-related kinase, p38, TANK-binding protein, and Janus kinase-2. These data strongly suggest that BAY is an inhibitor with multiple targets and could serve as a lead compound in developing strong anti-inflammatory drugs with multiple targets in inflammatory responses.

126 citations

Journal ArticleDOI
TL;DR: An intelligent household LED lighting system that can autonomously adjust the minimum light intensity value to enhance both energy efficiency and user satisfaction is proposed.
Abstract: Saving energy has become one of the most important issues these days. The most waste of energy is caused by the inefficient use of the consumer electronics. Particularly, a light accounts for a great part of the total energy consumption. Various light control systems are introduced in current markets, because the installed lighting systems are outdated and energy-inefficient. However, due to architectural limitations, the existing light control systems cannot be successfully applied to home and office buildings. Therefore, this paper proposes an intelligent household LED lighting system considering energy efficiency and user satisfaction. The proposed system utilizes multi sensors and wireless communication technology in order to control an LED light according to the user's state and the surroundings. The proposed LED lighting system can autonomously adjust the minimum light intensity value to enhance both energy efficiency and user satisfaction. We designed and implemented the proposed system in the test bed and measured total power consumption to verify the performance. The proposed LED lighting system reduces total power consumption of the test bed up to 21.9%1.

125 citations


Authors

Showing all 13500 results

NameH-indexPapersCitations
Carl Nathan13543091535
Scheffer C.G. Tseng9333329213
Richard L. Sidman9329732009
H. Yamaguchi9037533135
Ajith Abraham86111331834
Byung Ihn Choi7860924925
Stefano Soatto7849923597
J. H. Kim7356623052
Daehee Kang7242223959
Lance M. McCracken7228118897
Masanobu Shinozuka6945621961
Seung U. Kim6435514269
Sug Hyung Lee6445421552
Seung U. Kim6312911983
Nam Jin Yoo6340312692
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Kyung Hee University
46.5K papers, 953.5K citations

97% related

Hanyang University
58.8K papers, 1.1M citations

97% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202362
2022204
20212,536
20202,301
20192,140
20181,991