scispace - formally typeset
Search or ask a question
Institution

City University of Hong Kong

EducationHong Kong, China
About: City University of Hong Kong is a education organization based out in Hong Kong, China. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 19778 authors who have published 60149 publications receiving 1738681 citations. The organization is also known as: CityU.


Papers
More filters
Journal ArticleDOI
28 Aug 2015-Science
TL;DR: A large-scale assessment suggests that experimental reproducibility in psychology leaves a lot to be desired, and correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.
Abstract: Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.

5,532 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: It is found that anticipated reciprocal relationships affect individuals' attitudes toward knowledge sharing while both sense of self-worth and organizational climate affect subjective norms, and anticipated extrinsic rewards exert a negative effect on individuals' knowledge-sharing attitudes.
Abstract: Individuals' knowledge does not transform easily into organizational knowledge even with the implementation of knowledge repositories. Rather, individuals tend to hoard knowledge for various reasons. The aim of this study is to develop an integrative understanding of the factors supporting or inhibiting individuals' knowledge-sharing intentions. We employ as our theoretical framework the theory of reasoned action (TRA), and augment it with extrinsic motivators, social-psychological forces and organizational climate factors that are believed to influence individuals' knowledge- sharing intentions. Through a field survey of 154 managers from 27 Korean organizations, we confirm our hypothesis that attitudes toward and subjective norms with regard to knowledge sharing as well as organizational climate affect individuals' intentions to share knowledge. Additionally, we find that anticipated reciprocal relationships affect individuals' attitudes toward knowledge sharing while both sense of self-worth and organizational climate affect subjective norms. Contrary to common belief, we find anticipated extrinsic rewards exert a negative effect on individuals' knowledge-sharing attitudes.

3,880 citations

Journal ArticleDOI
TL;DR: An international consortium dedicated to large-scale data sharing and analytics across expert groups is formed, showing marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features.
Abstract: Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.

3,351 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: The Least Squares Generative Adversarial Network (LSGAN) as discussed by the authors adopts the least square loss function for the discriminator to solve the vanishing gradient problem in GANs.
Abstract: Unsupervised learning with generative adversarial networks (GANs) has proven hugely successful. Regular GANs hypothesize the discriminator as a classifier with the sigmoid cross entropy loss function. However, we found that this loss function may lead to the vanishing gradients problem during the learning process. To overcome such a problem, we propose in this paper the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss function for the discriminator. We show that minimizing the objective function of LSGAN yields minimizing the Pearson X2 divergence. There are two benefits of LSGANs over regular GANs. First, LSGANs are able to generate higher quality images than regular GANs. Second, LSGANs perform more stable during the learning process. We evaluate LSGANs on LSUN and CIFAR-10 datasets and the experimental results show that the images generated by LSGANs are of better quality than the ones generated by regular GANs. We also conduct two comparison experiments between LSGANs and regular GANs to illustrate the stability of LSGANs.

3,227 citations


Authors

Showing all 20236 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Yang Yang1712644153049
Yang Yang1642704144071
Hua Zhang1631503116769
Hui-Ming Cheng147880111921
Frede Blaabjerg1472161112017
Stephen J. Lippard141120189269
Guanrong Chen141165292218
Shuit-Tong Lee138112177112
Yu Huang136149289209
Xiaodong Wang1351573117552
Mohammad Khaja Nazeeruddin12964685630
Alex K.-Y. Jen12892161811
Chao Zhang127311984711
Chi-Ming Che121130562800
Network Information
Related Institutions (5)
Nanyang Technological University
112.8K papers, 3.2M citations

97% related

National University of Singapore
165.4K papers, 5.4M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

94% related

University of Science and Technology of China
101K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023179
20221,069
20215,218
20204,649
20194,240
20183,510